高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加权能耗最小化的无人机辅助移动边缘计算资源分配策略

李安 戴龙斌 余礼苏 王振

李安, 戴龙斌, 余礼苏, 王振. 加权能耗最小化的无人机辅助移动边缘计算资源分配策略[J]. 电子与信息学报, 2022, 44(11): 3858-3865. doi: 10.11999/JEIT210832
引用本文: 李安, 戴龙斌, 余礼苏, 王振. 加权能耗最小化的无人机辅助移动边缘计算资源分配策略[J]. 电子与信息学报, 2022, 44(11): 3858-3865. doi: 10.11999/JEIT210832
LI An, DAI Longbin, YU Lisu, WANG Zhen. Resource Allocation for Unmanned Aerial Vehicle-assisted Mobile Edge Computing to Minimize Weighted Energy Consumption[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3858-3865. doi: 10.11999/JEIT210832
Citation: LI An, DAI Longbin, YU Lisu, WANG Zhen. Resource Allocation for Unmanned Aerial Vehicle-assisted Mobile Edge Computing to Minimize Weighted Energy Consumption[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3858-3865. doi: 10.11999/JEIT210832

加权能耗最小化的无人机辅助移动边缘计算资源分配策略

doi: 10.11999/JEIT210832
基金项目: 国家自然科学基金(61761030, 62161024),江西省科技厅重点研发计划(20202BBE53019),中国博士后科学基金(2021TQ0136),计算机体系结构国家重点实验室开放课题(CARCHB202019)
详细信息
    作者简介:

    李安:女,教授,研究方向为物理层安全、无人机通信

    戴龙斌:男,硕士生,研究方向为移动边缘计算

    余礼苏:男,副教授,研究方向为无线通信技术、无人机通信、可见光通信等

    王振:男,副教授,主要研究方向为无线通信技术、物联网、无人机通信等

    通讯作者:

    余礼苏 lisuyu@ncu.edu.cn

  • 中图分类号: TN92

Resource Allocation for Unmanned Aerial Vehicle-assisted Mobile Edge Computing to Minimize Weighted Energy Consumption

Funds: The National Natural Science Foundation of China (61761030, 62161024), The Key Research and Development Project of Jiangxi Province (20202BBE53019), China Postdoctoral Science Foundation (2021TQ0136), The State Key Laboratory of Computer Architecture Project (CARCHB202019)
  • 摘要: 针对无人机(UAV)辅助的移动边缘计算(MEC)系统,考虑到无人机能耗与地面设备能耗不在一个数量级,该文提出通过给地面设备能耗增加一个权重因子以平衡无人机能耗与地面设备能耗。同时在满足地面设备的任务需求下,通过联合优化无人机轨迹、系统资源分配以最小化无人机和地面设备的加权能耗。该问题高度非凸,为此提出一个基于交替优化算法的两阶段资源分配策略解决该非凸问题。第1阶段在给定地面设备的卸载功率下,利用连续凸逼近(SCA)方法求解无人机轨迹规划、CPU频率资源分配及卸载时间分配;第2阶段求解地面设备的卸载功率分配。通过两阶段的交替和迭代优化找到原问题的次优解。仿真结果验证了所提算法在降低系统能耗方面的有效性。
  • 图  1  系统模型

    图  2  数据比特卸载协议示例

    图  3  不同权重因子下无人机的飞行轨迹

    图  4  不同优化方案下无人机能耗与地面设备能耗的关系

    图  5  $\omega {\text{ = }}200$时不同优化方案下地面设备能耗的大小

    图  6  $\omega {\text{ = }}200,T{\text{ = }}80\;{\rm{ s}}$时地面设备在不同时隙内的卸载时间

    图  7  $\omega {\text{ = }}200,T{\text{ = }}80\; {\rm{s}}$时无人机分配给地面设备的计算频率

    表  1  系统参数

    参数含义
    $B$信号带宽(Hz)
    $H$无人机飞行高度(m)
    ${P_{kn}}$k个地面设备第n时隙的卸载功率(W)
    $C$单位比特计算任务所需的 CPU 循环次数
    ${w_{kn}}$k个地面设备第n时隙的卸载时间
    ${f_{u,kn}}$无人机分配给第k个地面设备第n时隙的计算频率
    ${f_{kn}}$k个地面设备第n时隙的计算频率
    ${v_n}$n时隙无人机的飞行速度
    ${\kappa _k}$地面设备CPU有效电容系数
    ${\kappa _u}$无人机CPU有效电容系数
    $\rho $空气密度(kg/m3)
    $A$无人机叶片扫过的面积(m2)
    ${U_{{\rm{tip}}} }$无人机叶尖角速度(m/s)
    ${d_0}$机身阻力比
    ${{\boldsymbol{v}}_0}$无人机悬停时平均旋翼诱导速度(m/s)
    ${s_0}$总叶片面积与叶片扫过面积之比
    ${P_0}$无人机悬停状态下型阻功率
    ${P_i}$无人机悬停状态下的诱导功率
    下载: 导出CSV

    表  2  算法1:基于交替优化算法的两阶段资源分配策略

     输入:${\boldsymbol{q}}_n^0,{\boldsymbol{v}}_n^0,y_{kn}^0,u_n^0,P_{kn}^0,w_{kn}^0,\varepsilon$,并设置$ r = 0 $;
     Repeat
       (1)给定$P_{kn}^r,{\boldsymbol{q}}_n^r,{\boldsymbol{v}}_n^r,y_{kn}^r,u_n^r,w_{kn}^r$,求解问题P3得到
        $\left\{ {{\boldsymbol{q}}_n^*,{\boldsymbol{v}}_n^*,y_{kn}^*,u_n^*,w_{kn}^*,f_{kn}^*,f_{u,kn}^*,D_{kn}^*} \right\}$;
       (2)给定$\left\{ {{\boldsymbol{q}}_n^*,{\boldsymbol{v}}_n^*,y_{kn}^*,u_n^*,w_{kn}^*,f_{kn}^*,f_{u,kn}^*,D_{kn}^*} \right\}$,求解问
        题P4得到$P_{kn}^*$;
       (3)更新$r = r + 1$,并重新初始化迭代变量
        $\left\{ {{\boldsymbol{q}}_n^r,{\boldsymbol{v}}_n^r,y_{kn}^r,u_n^r,w_{kn}^r,P_{kn}^r } \right\} \triangleq$
        $\left\{ {{\boldsymbol{q}}_n^*,{\boldsymbol{v}}_n^*,y_{kn}^*,u_n^*,w_{kn}^*, P_{kn}^*} \right\}$;
       (4) if ${({\tilde E_{ {\rm{fly} } } }{\text{ + } }{E_{ {\rm{comp} } } }{\text{ + } }\omega {e_{{\rm{user}}} })^{r + 1} }$
        $- {({\tilde E_{{\rm{fly}}} }{\text{ + } }{E_{{\rm{comp}}} }{\text{ + } }\omega {e_{{\rm{user}}} })^r} \le \varepsilon $,则退出循环,否则返回
        步骤(1);
     输出:$\left\{ { {{\boldsymbol{q}}_n},{{\boldsymbol{v}}_n},{y_{kn} },{u_n},{w_{kn} },{f_{kn} },{f_{u,kn} },{D_{kn} } } \right\}$;
    下载: 导出CSV

    表  3  仿真参数值

    参数取值参数取值
    $B$1 MHz$ \rho $1.225 kg/m3
    $H$100 m$ A $0.603 m2
    ${I_k}$100 Mbit${U_{{\rm{tip}}} }$200 m/s
    $C$1000 cycles/bit${d_0}$0.3010
    $T$100 s${v_0}$6.2089 m/s
    ${f^{{\rm{max}}} }$0.3 GHz${s_0}$0.0499
    $f_u^{{\rm{max}}}$6 GHz${P_0}$225.79 W
    ${{\boldsymbol{q}}_I}$[–700,0] m${P_i}$426.07 W
    ${{\boldsymbol{q}}_F}$[700,0] m${\tau _n}$0.5 s
    ${V_{{\rm{max}}} }$40 m/s$N$200
    ${\kappa _k}$10–28${\beta _0}$–60 dB
    ${\kappa _u}$10–28${\sigma ^2}$–100 dBm
    下载: 导出CSV
  • [1] YOU Changsheng, HUANG Kaibin, and CHAE H. Energy efficient mobile cloud computing powered by wireless energy transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1757–1771. doi: 10.1109/JSAC.2016.2545382
    [2] SARKAR S, CHATTERJEE S, and MISRA S. Assessment of the suitability of fog computing in the context of internet of things[J]. IEEE Transactions on Cloud Computing, 2018, 6(1): 46–59. doi: 10.1109/TCC.2015.2485206
    [3] LIN Xingqin, YAJNANARAYANA V, MURUGANATHAN S D, et al. The sky is not the limit: LTE for unmanned aerial vehicles[J]. IEEE Communications Magazine, 2018, 56(4): 204–210. doi: 10.1109/MCOM.2018.1700643
    [4] WANG Jinyuan, MA Yang, LU Rongrong, et al. Hovering UAV-Based FSO communications: Channel modelling, performance analysis, and parameter optimization[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 2946–2959. doi: 10.1109/JSAC.2021.3088656
    [5] 董超, 沈赟, 屈毓锛. 基于无人机的边缘智能计算研究综述[J]. 智能科学与技术学报, 2020, 2(3): 227–239. doi: 10.11959/j.issn.2096–6652.202025.

    DONG Chao, SHEN Yun, and QU Yuben. A survey of UAV-based edge intelligent computing[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 227–239. doi: 10.11959/j.issn.2096–6652.202025.
    [6] MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [7] HU Qiyu, CAI Yunlong, YU Guanding, et al. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6(2): 1879–1892. doi: 10.1109/JIOT.2018.2878876
    [8] ZENG Ming, DU Rong, FODOR C, et al. Computation rate maximization for wireless powered mobile edge computing with NOMA[C]. IEEE 20th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), Washington, USA, 2019: 1–9. doi: 10.1109/WoWMoM.2019.8792997.
    [9] ZHOU Fuhui and HU R Q. Computation efficiency maximization in wireless-powered mobile edge computing networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3170–3184. doi: 10.1109/TWC.2020.2970920
    [10] 吴启晖, 吴伟. 无人机辅助边缘计算的能量效率最大化算法设计[J]. 通信学报, 2020, 41(10): 15–24. doi: 10.11959/j.issn.1000-436x.2020204

    WU Qihui and WU Wei. Algorithm design on energy efficiency maximization for UAV-assisted edge computing[J]. Journal on Communications, 2020, 41(10): 15–24. doi: 10.11959/j.issn.1000-436x.2020204
    [11] ZHOU Yi, PAN Cunhua, PHEE L Y, et al. Secure communications for UAV-enabled mobile edge computing systems[J]. IEEE Transactions on Communications, 2020, 68(1): 376–388. doi: 10.1109/TCOMM.2019.2947921
    [12] DIAO Xianbang, ZHENG Jianchao, WU Yuan, et al. Joint trajectory design, task data, and computing resource allocations for NOMA-based and UAV-assisted mobile edge computing[J]. IEEE Access, 2019, 7: 117448–117459. doi: 10.1109/ACCESS.2019.2936437
    [13] HUA Meng, WANG Yi, ZHANG Zhengming, et al. Optimal resource partitioning and bit allocation for UAV-enabled mobile edge computing[C]. IEEE 88th Vehicular Technology Conference, Chicago, USA, 2018: 1–6. doi: 10.1109/VTCFall.2018.8690707.
    [14] ZHAN Chen, HU Han, SUI Xiufeng, et al. Completion time and energy optimization in the UAV-enabled mobile-edge computing system[J]. IEEE Internet of Things Journal, 2020, 7(8): 7808–7822. doi: 10.1109/JIOT.2020.2993260
    [15] LIU Yuan, XIONG Ke, NI Qiang, et al. UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization[J]. IEEE Internet of Things Journal, 2020, 7(4): 2777–2790. doi: 10.1109/JIOT.2019.2958975
    [16] MEI Haibo, WANG Kezhi, ZHOU Dongdai, et al. Joint trajectory-task-cache optimization in UAV-enabled mobile edge networks for cyber-physical system[J]. IEEE Access, 2019, 7: 156476–156488. doi: 10.1109/ACCESS.2019.2949032
    [17] ZHANG Xiaochen, ZHANG Jiao, XIONG Jun, et al. Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA[J]. IEEE Internet of Things Journal, 2020, 7(6): 5613–5627. doi: 10.1109/JIOT.2020.2980035
    [18] ZHANG Tiankui, XU Yu, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5505–5516. doi: 10.1109/TII.2019.2948406
    [19] ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  2698
  • HTML全文浏览量:  1359
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 修回日期:  2021-10-29
  • 网络出版日期:  2021-11-14
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回