高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分模式分解和门循环单元的电子系统间歇故障严重程度评估方法

李晟 徐飞洋 李玉晓 刘松华 张文生 郭肇禄

李晟, 徐飞洋, 李玉晓, 刘松华, 张文生, 郭肇禄. 基于变分模式分解和门循环单元的电子系统间歇故障严重程度评估方法[J]. 电子与信息学报, 2022, 44(10): 3673-3682. doi: 10.11999/JEIT210795
引用本文: 李晟, 徐飞洋, 李玉晓, 刘松华, 张文生, 郭肇禄. 基于变分模式分解和门循环单元的电子系统间歇故障严重程度评估方法[J]. 电子与信息学报, 2022, 44(10): 3673-3682. doi: 10.11999/JEIT210795
LI Sheng, XU Feiyang, LI Yuxiao, LIU Songhua, ZHANG Wensheng, GUO Zhaolu. A Method for Evaluating the Severity of Intermittent Faults of Electronic Systems Based on Variational Mode Decomposition-Gated Recurrent Units[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3673-3682. doi: 10.11999/JEIT210795
Citation: LI Sheng, XU Feiyang, LI Yuxiao, LIU Songhua, ZHANG Wensheng, GUO Zhaolu. A Method for Evaluating the Severity of Intermittent Faults of Electronic Systems Based on Variational Mode Decomposition-Gated Recurrent Units[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3673-3682. doi: 10.11999/JEIT210795

基于变分模式分解和门循环单元的电子系统间歇故障严重程度评估方法

doi: 10.11999/JEIT210795
基金项目: 国家自然科学基金(61762047, 61662029, U1636220)
详细信息
    作者简介:

    李晟:男,讲师,研究方向为人工智能、电子系统故障预测与健康管理

    徐飞洋:男,硕士生,研究方向为信号与信息处理、嵌入式系统

    李玉晓:女,讲师,研究方向为信号与信息处理、复杂系统仿真

    刘松华:男,副教授,研究方向为复杂网络、数据挖掘

    张文生:男,教授,研究方向为人工智能、机器学习

    郭肇禄:男,副教授,研究方向为智能计算、机器学习

    通讯作者:

    李玉晓 472619115@qq.com

  • 中图分类号: TP391.4

A Method for Evaluating the Severity of Intermittent Faults of Electronic Systems Based on Variational Mode Decomposition-Gated Recurrent Units

Funds: The National Natural Science Foundation of China (61762047, 61662029, U1636220)
  • 摘要: 针对电子系统间歇故障信号受噪声影响大且冗余信息多,导致深度神经网络模型对间歇故障严重程度评估能力受限的问题,该文提出一种基于变分模式分解和门循环单元(VMD-GRU)的间歇故障严重程度评估方法。先通过变分模式分解(VMD)对间歇故障信号进行自适应分解得到所有固有模式函数(IMF)分量,再对IMF分量进行相似度分析选择敏感分量,并利用微分增强型能量算子构建严重程度敏感因子。最后,利用严重程度敏感因子训练门循环单元(GRU)循环神经网络评估模型。通过对电子系统的关键电路注入不同严重程度的间歇故障进行评估,结果表明该方法有较强的间歇故障严重程度评估能力,评估结果更加准确有效。
  • 图  1  焊点开裂导致的退化过程中间歇故障严重程度的演变过程

    图  2  基于VMD-GRU的间歇故障严重程度评估方法流程图

    图  3  GRU细胞单元基本结构示意图

    图  4  电子系统间歇故障严重程度评估模型

    图  5  Sallen-Key有源低通滤波器电路及实验环境

    图  6  VMD分解和相似度分析

    图  7  各间歇故障状态的原始电压信号和特征

    表  1  模型基本参数设置

    模型参数数值
    信号输入长度20
    GRU隐藏层数200
    全连接层神经元数5
    初始学习率0.001
    学习率下降系数0.5
    学习率下降周期20
    批量大小20
    最大周期数200
    下载: 导出CSV

    表  2  Sallen-Key电路不同严重程度的间歇故障分类结果

    L1L2L3L4L5
    L149
    L2149
    L3149
    L450
    L5150
    下载: 导出CSV

    表  3  Sallen-Key电路不同严重程度间歇故障识别准确率(%)

    评估方法L1L2L3L4L5
    本文方法989898100100
    下载: 导出CSV

    表  4  文献[16]间歇故障状态分类结果

    L1L2L3L4L5
    L14915
    L2135
    L35037
    L413
    L550
    下载: 导出CSV

    表  5  文献[17]间歇故障状态分类结果

    L1L2L3L4L5
    L131
    L21950
    L350
    L450
    L550
    下载: 导出CSV

    表  6  文献[26]间歇故障状态分类结果

    L1L2L3L4L5
    L14024
    L29201
    L3164920
    L426
    L5450
    下载: 导出CSV

    表  7  文献[27]间歇故障状态分类结果

    L1L2L3L4L5
    L1506
    L244
    L3506
    L444
    L550
    下载: 导出CSV

    表  8  对比结果(%)

    评估方法L1L2L3L4L5平均准确率
    本文方法98989810010098.8
    文献[16]方法98701002610078.8
    文献[17]方法6210010010010092.4
    文献[26]方法8040985210074
    文献[27]方法100881008810095.2
    下载: 导出CSV
  • [1] IEEE. IEEE 100: The authoritative dictionary of IEEE standards terms, seventh edition[S]. USA: IEEE Press, 2000.
    [2] ZHOU Donghua, ZHAO Yinghong, WANG Zidong, et al. Review on diagnosis techniques for intermittent faults in dynamic systems[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2337–2347. doi: 10.1109/TIE.2019.2907500
    [3] RASHID L, PATTABIRAMAN K, and GOPALAKRISHNAN S. Characterizing the impact of intermittent hardware faults on programs[J]. IEEE Transactions on Reliability, 2015, 64(1): 297–310. doi: 10.1109/TR.2014.2363152
    [4] SAVIR J. Testing for single intermittent failures in combinational circuits by maximizing the probability of fault detection[J]. IEEE Transactions on Computers, 1980, C-29(5): 410–416. doi: 10.1109/TC.1980.1675595
    [5] ZHANG Liangwei, LIN Jing, LIU Bin, et al. A review on deep learning applications in prognostics and health management[J]. IEEE Access, 2019, 7: 162415–162438. doi: 10.1109/ACCESS.2019.2950985
    [6] 刘惠, 刘振宇, 郏维强, 等. 深度学习在装备剩余使用寿命预测技术中的研究现状与挑战[J]. 计算机集成制造系统, 2021, 27(1): 34–52.

    LIU Hui, LIU Zhenyu, JIA Weiqiang, et al. Current research and challenges of deep learning for equipment remaining useful life prediction[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 34–52.
    [7] GAO Zhiwei, CECATI C, and DING S X. A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757–3767. doi: 10.1109/TIE.2015.2417501
    [8] GAO Zhiwei, CECATI C, and DING S X. A survey of fault diagnosis and fault-tolerant techniques-Part II: Fault diagnosis with knowledge-based and hybrid/active approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768–3774.
    [9] LIU Zhenbao, JIA Zhen, VONG C M, et al. Capturing high-discriminative fault features for electronics-rich analog system via deep learning[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1213–1226. doi: 10.1109/TII.2017.2690940
    [10] SHRESTHA A and MAHMOOD A. Review of deep learning algorithms and architectures[J]. IEEE Access, 2019, 7: 53040–53065. doi: 10.1109/ACCESS.2019.2912200
    [11] ZHENG Shuai, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]. 2017 IEEE International Conference on Prognostics and Health Management, Dallas, USA, 2017: 88–95.
    [12] SHI Junyou, HE Qingjie, and WANG Zili. A transfer learning LSTM network-based severity evaluation for intermittent faults of an electrical connector[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 11(1): 71–82.
    [13] DE BRUIN T, VERBERT K, and BABUŠKA R. Railway track circuit fault diagnosis using recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 523–533. doi: 10.1109/TNNLS.2016.2551940
    [14] SHI Junyou, HE Qingjie, and WANG Zili. An LSTM-based severity evaluation method for intermittent open faults of an electrical connector under a shock test[J]. Measurement, 2021, 173: 108653. doi: 10.1016/j.measurement.2020.108653
    [15] DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
    [16] ZHANG Yahui, ZHOU Taotao, HUANG Xufeng, et al. Fault diagnosis of rotating machinery based on recurrent neural networks[J]. Measurement, 2021, 171: 108774. doi: 10.1016/j.measurement.2020.108774
    [17] TAO Ying, WANG Xiaodan, SÁNCHEZ R V, et al. Spur gear fault diagnosis using a multilayer gated recurrent unit approach with vibration signal[J]. IEEE Access, 2019, 7: 56880–56889. doi: 10.1109/ACCESS.2019.2914181
    [18] QI Haiyu, GANESAN S, and PECHT M. No-fault-found and intermittent failures in electronic products[J]. Microelectronics Reliability, 2008, 48(5): 663–674. doi: 10.1016/j.microrel.2008.02.003
    [19] KERKHOFF H G and EBRAHIMI H. Investigation of intermittent resistive faults in digital CMOS circuits[J]. Journal of Circuits, Systems and Computers, 2016, 25(3): 1640023. doi: 10.1142/S0218126616400235
    [20] LIU Cang, WANG Jianye, ZHANG Antang, et al. Research on the fault diagnosis technology of intermittent connection failure belonging to FPGA solder-joints in BGA package[J]. Optik, 2014, 125(2): 737–740. doi: 10.1016/j.ijleo.2013.07.044
    [21] LI Huakang, LYU Kehong, ZHANG Yong, et al. Study of solder joint intermittent fault diagnosis based on dynamic analysis[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(9): 1748–1758. doi: 10.1109/TCPMT.2019.2929752
    [22] HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
    [23] CARSON J R. Notes on the theory of modulation[J]. Proceedings of the Institute of Radio Engineers, 1922, 10(1): 57–64.
    [24] LI Junning, CHEN Wuge, HAN Ka, et al. Fault diagnosis of rolling bearing based on GA-VMD and improved WOA-LSSVM[J]. IEEE Access, 2020, 8: 166753–166767. doi: 10.1109/ACCESS.2020.3023306
    [25] LI Yuxiao, ZHOU Xinglong, and LI Sheng. A intermittent fault injection strategy for electronic equipment health status recognition[C]. 2020 11th International Conference on Prognostics and System Health Management, Jinan, China: IEEE, 2020: 68–73.
    [26] MIAO Xiaodong, LI Shunming, ZHU Yanqi, et al. A novel real-time fault diagnosis method for planetary gearbox using transferable hidden layer[J]. IEEE Sensors Journal, 2020, 20(15): 8403–8412. doi: 10.1109/JSEN.2020.2965988
    [27] LIAO Guoping, GAO Wei, YANG Gengjie, et al. Hydroelectric generating unit fault diagnosis using 1-D convolutional neural network and gated recurrent unit in small hydro[J]. IEEE Sensors Journal, 2019, 19(20): 9352–9363. doi: 10.1109/JSEN.2019.2926095
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  1009
  • HTML全文浏览量:  596
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-09-28
  • 网络出版日期:  2021-10-01
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回