高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联合特征参数的卫星单-混信号调制识别研究

杨洪娟 时统志 李博 赵楠 王钢

杨洪娟, 时统志, 李博, 赵楠, 王钢. 基于联合特征参数的卫星单-混信号调制识别研究[J]. 电子与信息学报, 2022, 44(10): 3499-3506. doi: 10.11999/JEIT210768
引用本文: 杨洪娟, 时统志, 李博, 赵楠, 王钢. 基于联合特征参数的卫星单-混信号调制识别研究[J]. 电子与信息学报, 2022, 44(10): 3499-3506. doi: 10.11999/JEIT210768
YANG Hongjuan, SHI Tongzhi, LI Bo, ZHAO Nan, WANG Gang. Research on Satellite Single-mixed Signal Modulation Recognition Based on Joint Feature Parameters[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3499-3506. doi: 10.11999/JEIT210768
Citation: YANG Hongjuan, SHI Tongzhi, LI Bo, ZHAO Nan, WANG Gang. Research on Satellite Single-mixed Signal Modulation Recognition Based on Joint Feature Parameters[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3499-3506. doi: 10.11999/JEIT210768

基于联合特征参数的卫星单-混信号调制识别研究

doi: 10.11999/JEIT210768
基金项目: 国家自然科学基金(62171154, 61901137),山东省自然科学基金(ZR2020MF007),广东省空天通信与网络技术重点实验室开放基金(2018B030322004)
详细信息
    作者简介:

    杨洪娟:女,副教授,博士,硕士生导师,研究方向为无线通信、协作网络编码、水声通信

    时统志:男,硕士生,研究方向为卫星通信与网络

    李博:男,副教授,博士,博士生导师,研究方向为无线通信、空天地网络、海洋信息传感网、飞行自组织网络

    赵楠:男,教授,博士,博士生导师,研究方向为无人机通信与网络、非正交多址技术

    王钢:男,教授,博士,博士生导师,研究方向为数据通信、物理层网络编码、通信网理论与技术

    通讯作者:

    李博 libo1983@hit.edu.cn

  • 中图分类号: TN911

Research on Satellite Single-mixed Signal Modulation Recognition Based on Joint Feature Parameters

Funds: The National Natural Science Foundation of China (62171154, 61901137), The Natural Science Foundation of Shandong Province (ZR2020MF007), The Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology (2018B030322004)
  • 摘要: 针对卫星通信中单-混信号调制类型识别效率低、准确性差等问题,该文提出一种基于高阶累积量和星座图聚类特性的调制识别算法。首先,根据4, 6阶累积量的属性特点构建3个特征参数,以识别多进制相移键控(MPSK)和部分多进制正交幅度调制(MQAM)调制类型,然后结合改进的星座图减法聚类算法分离出剩余调制样式,最后将参数联合,建立决策树分类器进行统一调度。该算法不依赖信号诸多先验信息,具有特征提取参数简单、识别种类多等特点。仿真结果表明,该算法在信噪比(SNR)10 dB下对卫星单-混信号的调制识别率仍能达到90%以上。
  • 图  1  对称PCMA信号模型

    图  2  特征参数${F_1}$分离特性曲线

    图  3  特征参数${F_2}$随SNR变化曲线

    图  4  特征参数${F_3}$分离特性曲线

    图  5  16QAM(混)信号理想星座图分布

    图  6  64QAM(混)信号理想星座图分布

    图  7  16QAM投影聚类示意图

    图  8  调制类型识别流程

    图  9  调制类型识别率

    图  10  不同调制方式所需最少数据长度

    图  11  识别性能算法比较

    表  1  单-混信号高阶累积量理论值

    调制类型${C_{20}}$${C_{21}}$${C_{40}}$${C_{41}}$${C_{42}}$${C_{60}}$${C_{63}}$
    BPSK$E$$E$$ - 2{E^2}$$ - 2{E^2}$$ - 2{E^2}$$16{E^3}$$16{E^3}$
    QPSK$0$$E$${E^2}$$0$$ - {E^2}$$0$$4{E^3}$
    8PSK$0$$E$$0$$0$$ - {E^2}$$0$$4{E^3}$
    16QAM$0$$E$$ - 0.68{E^2}$$0$$ - 0.68{E^2}$$0$$2.08{E^3}$
    64QAM$0$$E$${{\rm{ - }}}0.6191{E^2}$$0$${{\rm{ - }}}0.6191{E^2}$$0$$1.7972{E^3}$
    BPSK混$E$$E$${{\rm{ - }}}{E^2}$$ - {E^2}$$ - {E^2}$$4{E^3}$$4{E^3}$
    QPSK混$0$$E$${{\rm{ - }}}0.5{E^2}$$0$$ - 0.5{E^2}$$0$${E^3}$
    8PSK混$0$$E$$0$$0$$ - 0.5{E^2}$$0$${E^3}$
    16QAM混$0$$E$$ - 0.34{E^2}$$0$$ - 0.34{E^2}$$0$$0.52{E^3}$
    64QAM混$0$$E$${{\rm{ - }}}0.3096{E^2}$$0$${{\rm{ - 0}}}{{\rm{.3096}}}{E^2}$$0$$0.4493{E^3}$
    下载: 导出CSV

    表  2  MQAM单混调制信号聚类中心及相关系数

    调制类型密度半径${r_a}$判决系数$\lambda $聚类中心数${N_s}$
    16QAM0.630.10016
    64QAM0.380.10064
    16QAM混0.350.01049
    64QAM混0.220.001225
    下载: 导出CSV

    表  3  MQAM信号的${{\boldsymbol{r}}_{{\bf{max}} }}$, ${{\boldsymbol{r}}_{{\bf{min}} }}$, ${{\boldsymbol{R}}_{\boldsymbol{s}}}$理论值

    调制类型最大半径${r_{\max }}$最小半径${r_{\min }}$标准半径${R_s}$
    16QAM${3 \mathord{\left/{\vphantom {3 {\sqrt 5 }}} \right.} {\sqrt 5 }}$$ {1 \mathord{\left/{\vphantom {1 {\sqrt 5 }}} \right.} {\sqrt 5 }} $$3$
    64QAM${7 \mathord{\left/{\vphantom {7 {\sqrt {21} }}} \right.} {\sqrt {21} }}$${1 \mathord{\left/{\vphantom {1 {\sqrt {21} }}} \right.} {\sqrt {21} }}$$7$
    16QAM混${6 \mathord{\left/{\vphantom {6 {\sqrt {10} }}} \right.} {\sqrt {10} }}$${1 \mathord{\left/{\vphantom {1 {\sqrt {10} }}} \right.} {\sqrt {10} }}$$6$
    64QAM混${{14} \mathord{\left/{\vphantom {{14} {\sqrt {42} }}} \right.} {\sqrt {42} }}$${1 \mathord{\left/{\vphantom {1 {\sqrt {42} }}} \right.} {\sqrt {42} }}$$14$
    下载: 导出CSV

    表  4  MQAM信号的${{\boldsymbol{r}}_{{\bf{min}} }}$, ${{\boldsymbol{R}}_{\boldsymbol{s}}}$, ${{\boldsymbol{N}}_{\boldsymbol{s}}}$理论值

    调制类型最小半径${r_{\min }}$标准半径${R_s}$聚类中心数${N_s}$
    16QAM$ {{\sqrt 2 } \mathord{\left/{\vphantom {{\sqrt 2 } {\sqrt 5 }}} \right.} {\sqrt 5 }} $34
    64QAM${{\sqrt 2 } \mathord{\left/{\vphantom {{\sqrt 2 } {\sqrt {21} }}} \right.} {\sqrt {21} }}$78
    16QAM混${1 \mathord{\left/{\vphantom {1 {\sqrt 5 }}} \right.} {\sqrt 5 }}$67
    64QAM混$ {1 \mathord{\left/{\vphantom {1 {\sqrt {21} }}} \right.} {\sqrt {21} }} $1415
    下载: 导出CSV

    表  5  星座图聚类算法下的MQAM信号识别率(%)

    调制类型MQAM(单)类型识别率
    SNR=5 dBSNR=10 dBSNR=15 dBSNR=20 dB
    16QAM64QAM16QAM64QAM16QAM64QAM16QAM64QAM
    16QAM91999110001000
    64QAM15854942980100
    调制类型MQAM(混)类型识别率
    SNR=5 dBSNR=10 dBSNR=15 dBSNR=20 dB
    16QAM混64QAM混16QAM混64QAM混16QAM混64QAM混16QAM混64QAM混
    16QAM混128895510001000
    64QAM混25751090595397
    下载: 导出CSV
  • [1] 张天骐, 范聪聪, 葛宛营, 等. 基于ICA和特征提取的MIMO信号调制识别算法[J]. 电子与信息学报, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320

    ZHANG Tianqi, FAN Congcong, GE Wanying, et al. MIMO signal modulation recognition algorithm based on ICA and feature extraction[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2208–2215. doi: 10.11999/JEIT190320
    [2] WANG Tuo, HOU Yonghong, ZHANG Haoyuan, et al. Deep learning based modulation recognition with multi-cue fusion[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1757–1760. doi: 10.1109/LWC.2021.3078878
    [3] DANKBERG M. Paired carrier multiple access (PCMA) for satellite communications[C]. 17th AIAA International Communications Satellite Systems Conference and Exhibit, Yokohama, Japan, 1998: 787–791.
    [4] LUO Zhongqiang, ZHU Lidong, LI Chengjie, et al. Blind extraction for PCMA downlink mixed signals using guided signature[C]. 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 2018: 1218–1222. doi: 10.1109/CompComm.2018.8780845.
    [5] 廖灿辉, 万坚, 周世东. 利用累积量和似然特征的卫星单-混信号调制识别算法[J]. 电讯技术, 2010, 50(7): 44–48. doi: 10.3969/j.issn.1001-893x.2010.07.010

    LIAO Canhui, WAN Jian, and ZHOU Shidong. Modulation classification algorithm for satellite single-mixed signals using cumulants and likehood features[J]. Telecommunication Engineering, 2010, 50(7): 44–48. doi: 10.3969/j.issn.1001-893x.2010.07.010
    [6] 彭闯, 杨晓静, 蔡晓霞. 卫星单-混信号识别研究[J]. 火力与指挥控制, 2019, 44(8): 29–33, 40.

    PENG Chuang, YANG Xiaojing, and CAI Xiaoxia. Research on identification of satellite single-mixed signals[J]. Fire Control &Command Control, 2019, 44(8): 29–33, 40.
    [7] 贾子欣, 陈卫东, 杨松. PCMA信号调制识别研究[J]. 电子测量技术, 2020, 43(20): 133–138.

    JIA Zixin, CHEN Weidong, and YANG Song. Research on PCMA signal modulation recognition[J]. Electronic Measurement Technology, 2020, 43(20): 133–138.
    [8] ZENG Yuan, ZHANG Meng, HAN Fei, et al. Spectrum analysis and convolutional neural network for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8(3): 929–932. doi: 10.1109/LWC.2019.2900247
    [9] HONG Dehua, ZHANG Zilong, and XU Xiaodong. Automatic modulation classification using recurrent neural networks[C]. 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 2017: 695–700. doi: 10.1109/CompComm.2017.8322633.
    [10] ZHANG Duona, DING Wenrui, ZHANG Baochang, et al. Automatic modulation classification based on deep learning for unmanned aerial vehicles[J]. Sensors, 2018, 18(3): 924. doi: 10.3390/s18030924
    [11] NURSIAGA R and ALAYDRUS M. Efficiency of satellite transponder using paired carrier multiple access with low density parity check[C]. 2019 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Tangerang, Indonesia, 2019: 109–112. doi: 10.1109/ICRAMET47453.2019.8980423.
    [12] SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416–429. doi: 10.1109/26.837045
    [13] LIU Qianyu, KWONG C F, ZHANG Sibo, et al. A fuzzy-clustering based approach for MADM handover in 5G ultra-dense networks[J]. Wireless Networks, 2022, 28(2): 965–978. doi: 10.1007/s11276-019-02130-3.
    [14] JAJOO G, KUMAR Y, and YADAV S K. Blind signal PSK/QAM recognition using clustering analysis of constellation signature in flat fading channel[J]. IEEE Communications Letters, 2019, 23(10): 1853–1856. doi: 10.1109/LCOMM.2019.2929127
    [15] ASLAM M W, ZHU Zhechen, and NANDI A K. Automatic modulation classification using combination of genetic programming and KNN[J]. IEEE Transactions on Wireless Communications, 2012, 11(8): 2742–2750. doi: 10.1109/TWC.2012.060412.110460
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1190
  • HTML全文浏览量:  798
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-06
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回