高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于fMRI功能网络和贝叶斯矩阵分解的脑电源成像方法

刘柯 杨东 邓欣

刘柯, 杨东, 邓欣. 基于fMRI功能网络和贝叶斯矩阵分解的脑电源成像方法[J]. 电子与信息学报, 2022, 44(10): 3447-3457. doi: 10.11999/JEIT210764
引用本文: 刘柯, 杨东, 邓欣. 基于fMRI功能网络和贝叶斯矩阵分解的脑电源成像方法[J]. 电子与信息学报, 2022, 44(10): 3447-3457. doi: 10.11999/JEIT210764
LIU Ke, YANG Dong, DENG Xin. EEG Source Imaging Based on fMRI Functional Network and Bayesian Matrix Decomposition[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3447-3457. doi: 10.11999/JEIT210764
Citation: LIU Ke, YANG Dong, DENG Xin. EEG Source Imaging Based on fMRI Functional Network and Bayesian Matrix Decomposition[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3447-3457. doi: 10.11999/JEIT210764

基于fMRI功能网络和贝叶斯矩阵分解的脑电源成像方法

doi: 10.11999/JEIT210764
基金项目: 国家自然科学基金(61703065),重庆市基础研究与前沿探索项目(cstc2018jcyjAX0151),重庆市自然科学基金(cstc2020jcyj-msxmX0284),重庆市教委科技项目青年项目(KJQN202000625)
详细信息
    作者简介:

    刘柯:男,副教授,主要研究方向为脑电源成像、脑信号分析与脑机接口系统

    杨东:男,硕士生,研究方向为基于贝叶斯推断的EEG-fMRI融合源成像

    邓欣:男,副教授,研究方向为脑机接口系统、认知计算、智能信息处理

    通讯作者:

    刘柯 liuke@cqupt.edu.cn

  • 中图分类号: TN911.7

EEG Source Imaging Based on fMRI Functional Network and Bayesian Matrix Decomposition

Funds: The National Natural Science Foundation of China (61703065), Chongqing Research Program of Application Foundation and Advanced Technology (cstc2018jcyjAX0151), The Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0284), The Scientific and Technological Research Program of Chongqing (CQ) Municipal Education Commission (KJQN202000625)
  • 摘要: 脑电(EEG)是一种重要的脑功能成像技术,根据头皮记录的EEG信号重构皮层脑活动称为EEG源成像。然而脑源活动位置和尺寸的准确重构依然是一个挑战。为充分利用EEG和功能磁共振(fMRI)信号在时空分辨率上的互补信息,该文提出一个新的源成像方法——基于fMRI脑网络和时空约束的EEG源重构算法(FN-STCSI)。该方法在参数贝叶斯框架下,基于矩阵分解思想将源信号分解为若干时间基函数的线性组合。此外,为融合fMRI的高空间分辨率信息,FN-STCSI利用独立成分分析提取fMRI信号的功能网络,构建EEG源成像的空间协方差基,通过变分贝叶斯推断技术确定每个空间协方差基的相对贡献,实现EEG-fMRI融合。通过蒙特卡罗数值仿真和实验数据分析比较了FN-STCSI与现有算法在不同信噪比和不同先验条件下的性能,结果表明FN-STCSI能有效融合EEG-fMRI在时空上的互补信息,提高EEG弥散源成像的性能。
  • 图  1  FN-STCSI概率图模型

    图  2  模拟EEG数据生成流程图

    图  3  不同有效fMRI先验个数下的性能评价指标

    图  4  不同无效fMRI先验个数下的性能评价指标

    图  5  不同SNR下的性能评价指标

    图  6  不同SNIR下的性能评价指标

    图  7  各成像方法示例

    图  8  真实人脸识别EEG数据源成像结果

  • [1] 张杨松, 卓彦, 尧德中. 脑电磁成像进展及展望[J]. 中国科学:生命科学, 2020, 50(11): 1268–1284. doi: 10.1360/ssv-2019-0097

    ZHANG Yangsong, ZHUO Yan, and YAO Dezhong. Progresses and prospects of brain electromagnetic imaging[J]. Scientia Sinica Vitae, 2020, 50(11): 1268–1284. doi: 10.1360/ssv-2019-0097
    [2] OJEDA A, KREUTZ-DELGADO K, and MULLEN T. Fast and robust Block-Sparse Bayesian learning for EEG source imaging[J]. NeuroImage, 2018, 174: 449–462. doi: 10.1016/j.neuroimage.2018.03.048
    [3] HE Bin, SOHRABPOUR A, BROWN E, et al. Electrophysiological source imaging: A noninvasive window to brain dynamics[J]. Annual Review of Biomedical Engineering, 2018, 20: 171–196. doi: 10.1146/annurev-bioeng-062117-120853
    [4] HÄMÄLÄINEN M S and ILMONIEMI R J. Interpreting magnetic fields of the brain: Minimum norm estimates[J]. Medical & Biological Engineering & Computing, 1994, 32(1): 35–42. doi: 10.1007/BF02512476
    [5] DALE A M and SERENO M I. Improved localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach[J]. Journal of Cognitive Neuroscience, 1993, 5(2): 162–176. doi: 10.1162/jocn.1993.5.2.162
    [6] GRECH R, CASSAR T, MUSCAT J, et al. Review on solving the inverse problem in EEG source analysis[J]. Journal of NeuroEngineering and Rehabilitation, 2008, 5(1): 25. doi: 10.1186/1743-0003-5-25
    [7] PASCUAL-MARQUI R D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details[J]. Methods and Findings in Experimental and Clinical Pharmacology, 2002, 24(Suppl D): 5–12.
    [8] FRISTON K, HARRISON L, DAUNIZEAU J, et al. Multiple sparse priors for the M/EEG inverse problem[J]. NeuroImage, 2008, 39(3): 1104–1120. doi: 10.1016/j.neuroimage.2007.09.048
    [9] CHOWDHURY R A, LINA J M, KOBAYASHI E, et al. MEG source localization of spatially extended generators of epileptic activity: Comparing entropic and hierarchical bayesian approaches[J]. PLoS One, 2013, 8(2): e55969. doi: 10.1371/journal.pone.0055969
    [10] XU Furong, LIU Ke, YU Zhuliang, et al. EEG extended source imaging with structured sparsity and L1-norm residual[J]. Neural Computing and Applications, 2021, 33(14): 8513–8524. doi: 10.1007/s00521-020-05603-1
    [11] 周伊婕, 宋西姊, 何峰, 等. 基于脑电的多模态神经功能成像新技术研究进展[J]. 中国生物医学工程学报, 2020, 39(5): 595–602. doi: 10.3969/j.issn.0258-8021.2020.05.010

    ZHOU Yijie, SONG Xizi, HE Feng, et al. Research progress of multimodal functional neural imaging technology based on EEG[J]. Chinese Journal of Biomedical Engineering, 2020, 39(5): 595–602. doi: 10.3969/j.issn.0258-8021.2020.05.010
    [12] LIU A K, BELLIVEAU J W, and DALE A M. Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(15): 8945–8950. doi: 10.1073/pnas.95.15.8945
    [13] HENSON R N, FLANDIN G, FRISTON K J, et al. A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction[J]. Human Brain Mapping, 2010, 31(10): 1512–1531. doi: 10.1002/hbm.20956
    [14] LEI Xu, XU Peng, LUO Cheng, et al. fMRI functional networks for EEG source imaging[J]. Human Brain Mapping, 2011, 32(7): 1141–1160. doi: 10.1002/hbm.21098
    [15] ZUMER J M, ATTIAS H T, SEKIHARA K, et al. Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data[J]. NeuroImage, 2008, 41(3): 924–940. doi: 10.1016/j.neuroimage.2008.02.006
    [16] OU Wanmei, HÄMÄLÄINEN M S, and GOLLAND P. A distributed spatio-temporal EEG/MEG inverse solver[J]. Neuroimage, 2009, 44(3): 932–946. doi: 10.1016/j.neuroimage.2008.05.063
    [17] LIU Ke, YU Zhuliang, WU Wei, et al. Bayesian electromagnetic spatio-temporal imaging of extended sources based on matrix factorization[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(9): 2457–2469. doi: 10.1109/TBME.2018.2890291
    [18] ENGEMANN D A and GRAMFORT A. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals[J]. NeuroImage, 2015, 108: 328–342. doi: 10.1016/j.neuroimage.2014.12.040
    [19] TRUJILLO-BARRETO N J, AUBERT-VÁZQUEZ E, and PENNY W D. Bayesian M/EEG source reconstruction with spatio-temporal priors[J]. NeuroImage, 2008, 39(1): 318–335. doi: 10.1016/j.neuroimage.2007.07.062
    [20] HENSON R N, ABDULRAHMAN H, FLANDIN G, et al. Multimodal integration of M/EEG and f/MRI data in SPM12[J]. Frontiers in Neuroscience, 2019, 13: 300. doi: 10.3389/fnins.2019.00300
    [21] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    [22] ASADZADEH S, YOUSEFI REZAII T, BEHESHTI S, et al. A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities[J]. Journal of Neuroscience Methods, 2020, 339: 108740. doi: 10.1016/j.jneumeth.2020.108740
    [23] AL-SAFFAR A, BIALKOWSKI A, BAKTASHMOTLAGH M, et al. Closing the gap of simulation to reality in electromagnetic imaging of brain strokes via deep neural networks[J]. IEEE Transactions on Computational Imaging, 2021, 7: 13–21. doi: 10.1109/tci.2020.3041092
    [24] BORE J C, LI P, JIANG L, et al. A long short-term memory network for sparse spatiotemporal EEG source imaging[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3787–3800. doi: 10.1109/TMI.2021.3097758
    [25] HOU Yimin, ZHOU Lu, JIA Shuyue, et al. A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN[J]. Journal of Neural Engineering, 2020, 17(1): 016048. doi: 10.1088/1741-2552/ab4af6
    [26] WU Wei, ZHANG Yu, JIANG Jing, et al. An electroencephalographic signature predicts antidepressant response in major depression[J]. Nature Biotechnology, 2020, 38(4): 439–447. doi: 10.1038/s41587-019-0397-3
    [27] TOLL R T, WU Wei, NAPARSTEK S, et al. An electroencephalography connectomic profile of posttraumatic stress disorder[J]. American Journal of Psychiatry, 2020, 177(3): 233–243. doi: 10.1176/appi.ajp.2019.18080911
  • 加载中
图(8)
计量
  • 文章访问数:  783
  • HTML全文浏览量:  327
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2022-01-07
  • 录用日期:  2022-01-12
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回