高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于联邦学习资源需求预测的虚拟网络功能迁移算法

唐伦 吴婷 周鑫隆 陈前斌

唐伦, 吴婷, 周鑫隆, 陈前斌. 一种基于联邦学习资源需求预测的虚拟网络功能迁移算法[J]. 电子与信息学报, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743
引用本文: 唐伦, 吴婷, 周鑫隆, 陈前斌. 一种基于联邦学习资源需求预测的虚拟网络功能迁移算法[J]. 电子与信息学报, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743
TANG Lun, WU Ting, ZHOU Xinlong, CHEN Qianbin. A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743
Citation: TANG Lun, WU Ting, ZHOU Xinlong, CHEN Qianbin. A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743

一种基于联邦学习资源需求预测的虚拟网络功能迁移算法

doi: 10.11999/JEIT210743
基金项目: 国家自然科学基金(62071078),重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
    作者简介:

    唐伦:男,教授,博士,研究方向为下一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    吴婷:女,硕士生,研究方向为5G网络切片、服务功能链部署和重配置、机器学习算法

    周鑫隆:男,硕士生,研究方向为网络切片、资源分配、深度学习算法

    陈前斌:男,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、异构蜂窝网络等

    通讯作者:

    吴婷 2721283189@qq.com

  • 中图分类号: TN929.5

A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements

Funds: The National Natural Science Foundation of China (62071078), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要: 针对网络切片场景下时变网络流量引起的虚拟网络功能(VNF)迁移问题,该文提出一种基于联邦学习的双向门控循环单元(FedBi-GRU)资源需求预测的VNF迁移算法。该算法首先建立系统能耗和负载均衡的VNF迁移模型,然后提出一种基于分布式联邦学习框架协作训练预测模型,并在此框架的基础上设计基于在线训练的双向门控循环单元(Bi-GRU)算法预测VNF的资源需求。基于资源预测结果,联合系统能耗优化和负载均衡,提出一种分布式近端策略优化(DPPO)的迁移算法提前制定VNF迁移策略。仿真结果表明,两种算法的结合有效地降低了网络系统能耗并保证负载均衡。
  • 图  1  网络场景图

    图  2  FedBi-GRU与单任务Bi-GRU预测对比

    图  3  FedBi-GRU与多任务Bi-GRU预测对比

    图  4  不同CPU阈值的网络系统能耗

    图  5  不同CPU阈值的网络资源方差

    图  6  网络系统能耗对比

    图  7  网络资源方差对比

    表  1  基于DDPO的VNF迁移算法

     输入:VNF的资源需求预测结果$ {r_{t + 1}} = \{ r_{t + 1}^{\text{C}},r_{t + 1}^{\text{M}},r_{t + 1}^{\text{B}}\} $,物理网络图$ {G^{\text{P}}} = ({N^{\text{P}}},{L^{\text{P}}}) $,SFC网络图$ G_i^{\text{V}} = (N_i^{\text{V}},L_i^{\text{V}}) $
     输出:VNF映射策略$ \pi $
     (1) 根据VNF的资源需求预测结果,计算各个物理节点的资源利用率${\eta _{\rm{R}}}$
     (2) if ${\eta _{\rm{R} } } \le \eta _{\rm{R} }^{\text{d} }\& \& {\eta _{\rm{R} } } \ge \eta _{\rm{R}}^{ {\text{up} } }$ then
     (3) 初始化全局参数$ ({\theta _{\text{c}}},{\theta _{\text{a}}}) $,局部参数$ (\theta _{\text{c}}^n,\theta _{\text{a}}^n) $,全局PPO网络最大迭代次数$ {K_{{\text{max}}}} $,局部PPO网络最大迭代次数$ M $,线程数$ N $,学习率
       $ ({\varepsilon _{\text{c}}},{\varepsilon _{\text{a}}}) $
     (4)  for ${\text{thread} } = 1, 2,\cdots ,N$ do
     (5)   for ${\text{episode} } = 1,2, \cdots ,M$ do
     (6)    从本地Actor网络的策略$ \pi ({s_n}(t)\left| {{a_n}(t),\theta _{\text{a}}^n} \right.) $中选取映射动作$ a(t) $
     (7)    if $ {\eta _1} \in (\eta _1^{\text{d}},\eta _1^{{\text{up}}})\& \& {\eta _2} \in (\eta _2^{\text{d}},\eta _2^{{\text{up}}})\& \& {\eta _3} \in (\eta _3^{\text{d}},\eta _3^{{\text{up}}})\& \& T \le {T_{{\text{tot}}}} $ then
     (8)     执行动作$ a(t) $,根据式(16)得到瞬时奖励$ r(t) $,并转移到状态$ s(t + 1) $
     (9)     从本地Actor网络获得优势函数$ A({s_n}(t),{a_n}(t)) $
     (10)    else
     (11)     式(16)瞬时奖励$ r(t) = - {1 \mathord{\left/ {\vphantom {1 \varepsilon }} \right. } \varepsilon } $,从本地${\rm{Actor}}$网络重新选取动作$ a(t) $
     (12)    end if
     (13)   end for
     (14)    根据式(24)更新全局PPO的Critic网络累计梯度$ \Delta {\theta _{\text{c}}} $
     (15)    根据式(26)更新全局PPO的Actor网络累计梯度$ \Delta {\theta _{\text{a}}} $
     (16)    将$ \Delta {\theta _{\text{c}}} $和$ \Delta {\theta _a} $推送至全局PPO网络进行异步更新
     (17)    $ {\theta _{\text{c}}} \leftarrow {\theta _{\text{c}}} + {\varepsilon _{\text{c}}}\Delta {\theta _{\text{c}}} $,$ {\theta _{\text{a}}} \leftarrow {\theta _{\text{a}}} + {\varepsilon _{\text{a}}}\Delta {\theta _{\text{a}}} $
     (18)  end for
     (19)   同步全局PPO网络参数至本地PPO网络参数:$ \theta _{\text{c}}^{n'} = {\theta _{\text{c}}} $, $ \theta {_{\text{a}}^{n'}} = \theta _{\text{a}}^{} $
     (20)   继续执行步骤4—步骤17
     (21)  until $ K \ge {K_{{\text{max}}}} $
     (22) end if
    下载: 导出CSV

    表  2  仿真参数

    仿真参数描述取值
    $ {N^{\text{P}}} $物理节点数量22
    $ P_n^{\text{b}} $物理节点待机能耗Uniform[100,150](W)
    $ P_n^{{\text{cpu}}} $物理节点CPU满载能耗Uniform[250,300](W)
    $ P_m^{\text{s}} $物理节点状态切换能耗Uniform[15,25](W)
    $ {C_n} $物理节点CPU资源容量Uniform[200,300](units)
    $ {M_n} $物理节点存储资源容量Uniform[300,400](Mbps)
    $ {B_{nm}} $物理链路$ {l_{nm}} $带宽容量Uniform[80,100](Mbps)
    $ F $SFC集合数量30个
    $ N_i^{\text{V}} $VNF集合长度Uniform[3,5](个)
    $ {T_{{\text{tot}}}} $SFC端到端时延限制30 ms
    下载: 导出CSV
  • [1] LI Defang, HONG Peilin, XUE Kaiping, et al. Availability aware VNF deployment in datacenter through shared redundancy and multi-tenancy[J]. IEEE Transactions on Network and Service Management, 2019, 16(4): 1651–1664. doi: 10.1109/TNSM.2019.2936505
    [2] QU Kaige, ZHUANG Weihua, YE Qiang, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks[J]. IEEE Transactions on Communications, 2020, 68(4): 2394–2408. doi: 10.1109/TCOMM.2020.2968907
    [3] LIU Yicen, LU Hao, LI Xi, et al. An approach for service function chain reconfiguration in network function virtualization architectures[J]. IEEE Access, 2019, 7: 147224–147237. doi: 10.1109/ACCESS.2019.2946648
    [4] TANG Lun, HE Xiaoyu, ZHAO Peipei, et al. Virtual network function migration based on dynamic resource requirements prediction[J]. IEEE Access, 2019, 7: 112348–112362. doi: 10.1109/ACCESS.2019.2935014
    [5] LIU Yicen, LU Yu, LI Xi, et al. On dynamic service function chain reconfiguration in IoT networks[J]. IEEE Internet of Things Journal, 2020, 7(11): 10969–10984. doi: 10.1109/JIOT.2020.2991753
    [6] HUANG Yuzhe, XU Huahu, GAO Honghao, et al. SSUR: An approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(2): 670–681. doi: 10.1109/TGCN.2021.3067374
    [7] DAYARATHNA M, WEN Yonggang, and FAN Rui. Data center energy consumption modeling: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 18(1): 732–794. doi: 10.1109/COMST.2015.2481183
    [8] ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437
    [9] HAN Zhenhua, TAN Haisheng, WANG Rui, et al. Energy-efficient dynamic virtual machine management in data centers[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 344–360. doi: 10.1109/TNET.2019.2891787
    [10] ZHANG Zhongbao, CAO Huafeng, SU Sen, et al. Energy aware virtual network migration[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 1173–1189. doi: 10.1109/TCC.2020.2976966.
    [11] GUO Zehua, XU Yang, LIU Yafeng, et al. AggreFlow: Achieving power efficiency, load balancing, and quality of service in data center networks[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 17–33. doi: 10.1109/TNET.2020.3026015
    [12] LI Biyi, CHENG Bo, LIU Xuan, et al. Joint resource optimization and delay-aware virtual network function migration in data center networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 2960–2974. doi: 10.1109/TNSM.2021.3067883
    [13] ZHANG Kunpeng, WU Lan, ZHU Zhaoju, et al. A multitask learning model for traffic flow and speed forecasting[J]. IEEE Access, 2020, 8: 80707–80715. doi: 10.1109/ACCESS.2020.2990958
    [14] LIU Yi, JAMES J J Q, KANG Jiawen, et al. Privacy-preserving traffic flow prediction: A federated learning approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7751–7763. doi: 10.1109/JIOT.2020.2991401
    [15] ZHANG Zhenyu, LUO Xiangfeng, LIU Tong, et al. Proximal policy optimization with mixed distributed training[C]. The 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, USA, 2019: 1452–1456.
    [16] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017.
    [17] BEN YAHIA I G, BENDRISS J, SAMBA A, et al. CogNitive 5G networks: Comprehensive operator use cases with machine learning for management operations[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 252–259.
    [18] BENDRISS J, BEN YAHIA I G, and ZEGHLACHE D. Forecasting and anticipating SLO breaches in programmable networks[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 127–134.
    [19] BENDRISS J. Cognitive management of SLA in software-based networks[D]. [Ph. D. dissertation], Institut National des Télécommunications, 2018.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  878
  • HTML全文浏览量:  624
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 修回日期:  2022-03-23
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回