Processing math: 100%
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于联邦学习资源需求预测的虚拟网络功能迁移算法

唐伦 吴婷 周鑫隆 陈前斌

刘晟, 向敬成. 基于脉冲压缩的距离超分辨技术[J]. 电子与信息学报, 1998, 20(3): 330-335.
引用本文: 唐伦, 吴婷, 周鑫隆, 陈前斌. 一种基于联邦学习资源需求预测的虚拟网络功能迁移算法[J]. 电子与信息学报, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743
Liu Sheng, Xiang Jingcheng . RANGE SUPER-RESOLUTION BASED ON PULSE COMPRESSION[J]. Journal of Electronics & Information Technology, 1998, 20(3): 330-335.
Citation: TANG Lun, WU Ting, ZHOU Xinlong, CHEN Qianbin. A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3532-3540. doi: 10.11999/JEIT210743

一种基于联邦学习资源需求预测的虚拟网络功能迁移算法

doi: 10.11999/JEIT210743
基金项目: 国家自然科学基金(62071078),重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
    作者简介:

    唐伦:男,教授,博士,研究方向为下一代无线通信网络、异构蜂窝网络、软件定义无线网络等

    吴婷:女,硕士生,研究方向为5G网络切片、服务功能链部署和重配置、机器学习算法

    周鑫隆:男,硕士生,研究方向为网络切片、资源分配、深度学习算法

    陈前斌:男,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、异构蜂窝网络等

    通讯作者:

    吴婷 2721283189@qq.com

  • 中图分类号: TN929.5

A Virtual Network Function Migration Algorithm Based on Federated Learning Prediction of Resource Requirements

Funds: The National Natural Science Foundation of China (62071078), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要: 针对网络切片场景下时变网络流量引起的虚拟网络功能(VNF)迁移问题,该文提出一种基于联邦学习的双向门控循环单元(FedBi-GRU)资源需求预测的VNF迁移算法。该算法首先建立系统能耗和负载均衡的VNF迁移模型,然后提出一种基于分布式联邦学习框架协作训练预测模型,并在此框架的基础上设计基于在线训练的双向门控循环单元(Bi-GRU)算法预测VNF的资源需求。基于资源预测结果,联合系统能耗优化和负载均衡,提出一种分布式近端策略优化(DPPO)的迁移算法提前制定VNF迁移策略。仿真结果表明,两种算法的结合有效地降低了网络系统能耗并保证负载均衡。
  • 图  1  网络场景图

    图  2  FedBi-GRU与单任务Bi-GRU预测对比

    图  3  FedBi-GRU与多任务Bi-GRU预测对比

    图  4  不同CPU阈值的网络系统能耗

    图  5  不同CPU阈值的网络资源方差

    图  6  网络系统能耗对比

    图  7  网络资源方差对比

    表  1  基于DDPO的VNF迁移算法

     输入:VNF的资源需求预测结果rt+1={rCt+1,rMt+1,rBt+1},物理网络图GP=(NP,LP),SFC网络图GVi=(NVi,LVi)
     输出:VNF映射策略π
     (1) 根据VNF的资源需求预测结果,计算各个物理节点的资源利用率ηR
     (2) if ηRηdR&&ηRηupR then
     (3) 初始化全局参数(θc,θa),局部参数(θnc,θna),全局PPO网络最大迭代次数Kmax,局部PPO网络最大迭代次数M,线程数N,学习率
       (εc,εa)
     (4)  for thread=1,2,,N do
     (5)   for episode=1,2,,M do
     (6)    从本地Actor网络的策略π(sn(t)|an(t),θna)中选取映射动作a(t)
     (7)    if η1(ηd1,ηup1)&&η2(ηd2,ηup2)&&η3(ηd3,ηup3)&&TTtot then
     (8)     执行动作a(t),根据式(16)得到瞬时奖励r(t),并转移到状态s(t+1)
     (9)     从本地Actor网络获得优势函数A(sn(t),an(t))
     (10)    else
     (11)     式(16)瞬时奖励r(t)=1/1εε,从本地Actor网络重新选取动作a(t)
     (12)    end if
     (13)   end for
     (14)    根据式(24)更新全局PPO的Critic网络累计梯度Δθc
     (15)    根据式(26)更新全局PPO的Actor网络累计梯度Δθa
     (16)    将ΔθcΔθa推送至全局PPO网络进行异步更新
     (17)    θcθc+εcΔθc,θaθa+εaΔθa
     (18)  end for
     (19)   同步全局PPO网络参数至本地PPO网络参数:θnc=θc, θna=θa
     (20)   继续执行步骤4—步骤17
     (21)  until KKmax
     (22) end if
    下载: 导出CSV

    表  2  仿真参数

    仿真参数描述取值
    NP物理节点数量22
    Pbn物理节点待机能耗Uniform[100,150](W)
    Pcpun物理节点CPU满载能耗Uniform[250,300](W)
    Psm物理节点状态切换能耗Uniform[15,25](W)
    Cn物理节点CPU资源容量Uniform[200,300](units)
    Mn物理节点存储资源容量Uniform[300,400](Mbps)
    Bnm物理链路lnm带宽容量Uniform[80,100](Mbps)
    FSFC集合数量30个
    NViVNF集合长度Uniform[3,5](个)
    TtotSFC端到端时延限制30 ms
    下载: 导出CSV
  • [1] LI Defang, HONG Peilin, XUE Kaiping, et al. Availability aware VNF deployment in datacenter through shared redundancy and multi-tenancy[J]. IEEE Transactions on Network and Service Management, 2019, 16(4): 1651–1664. doi: 10.1109/TNSM.2019.2936505
    [2] QU Kaige, ZHUANG Weihua, YE Qiang, et al. Dynamic flow migration for embedded services in SDN/NFV-enabled 5G core networks[J]. IEEE Transactions on Communications, 2020, 68(4): 2394–2408. doi: 10.1109/TCOMM.2020.2968907
    [3] LIU Yicen, LU Hao, LI Xi, et al. An approach for service function chain reconfiguration in network function virtualization architectures[J]. IEEE Access, 2019, 7: 147224–147237. doi: 10.1109/ACCESS.2019.2946648
    [4] TANG Lun, HE Xiaoyu, ZHAO Peipei, et al. Virtual network function migration based on dynamic resource requirements prediction[J]. IEEE Access, 2019, 7: 112348–112362. doi: 10.1109/ACCESS.2019.2935014
    [5] LIU Yicen, LU Yu, LI Xi, et al. On dynamic service function chain reconfiguration in IoT networks[J]. IEEE Internet of Things Journal, 2020, 7(11): 10969–10984. doi: 10.1109/JIOT.2020.2991753
    [6] HUANG Yuzhe, XU Huahu, GAO Honghao, et al. SSUR: An approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(2): 670–681. doi: 10.1109/TGCN.2021.3067374
    [7] DAYARATHNA M, WEN Yonggang, and FAN Rui. Data center energy consumption modeling: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 18(1): 732–794. doi: 10.1109/COMST.2015.2481183
    [8] ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437
    [9] HAN Zhenhua, TAN Haisheng, WANG Rui, et al. Energy-efficient dynamic virtual machine management in data centers[J]. IEEE/ACM Transactions on Networking, 2019, 27(1): 344–360. doi: 10.1109/TNET.2019.2891787
    [10] ZHANG Zhongbao, CAO Huafeng, SU Sen, et al. Energy aware virtual network migration[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 1173–1189. doi: 10.1109/TCC.2020.2976966.
    [11] GUO Zehua, XU Yang, LIU Yafeng, et al. AggreFlow: Achieving power efficiency, load balancing, and quality of service in data center networks[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 17–33. doi: 10.1109/TNET.2020.3026015
    [12] LI Biyi, CHENG Bo, LIU Xuan, et al. Joint resource optimization and delay-aware virtual network function migration in data center networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 2960–2974. doi: 10.1109/TNSM.2021.3067883
    [13] ZHANG Kunpeng, WU Lan, ZHU Zhaoju, et al. A multitask learning model for traffic flow and speed forecasting[J]. IEEE Access, 2020, 8: 80707–80715. doi: 10.1109/ACCESS.2020.2990958
    [14] LIU Yi, JAMES J J Q, KANG Jiawen, et al. Privacy-preserving traffic flow prediction: A federated learning approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7751–7763. doi: 10.1109/JIOT.2020.2991401
    [15] ZHANG Zhenyu, LUO Xiangfeng, LIU Tong, et al. Proximal policy optimization with mixed distributed training[C]. The 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, USA, 2019: 1452–1456.
    [16] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv preprint arXiv: 1707.06347, 2017.
    [17] BEN YAHIA I G, BENDRISS J, SAMBA A, et al. CogNitive 5G networks: Comprehensive operator use cases with machine learning for management operations[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 252–259.
    [18] BENDRISS J, BEN YAHIA I G, and ZEGHLACHE D. Forecasting and anticipating SLO breaches in programmable networks[C]. 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 2017: 127–134.
    [19] BENDRISS J. Cognitive management of SLA in software-based networks[D]. [Ph. D. dissertation], Institut National des Télécommunications, 2018.
  • 期刊类型引用(2)

    1. 王旭莹,张润宁,王志斌. 星载方位多通道斜视SAR对运动目标成像方法. 航天器工程. 2023(05): 16-24 . 百度学术
    2. 张倩,李宏博,张云,任航. 星载多发多收SAR多维编码波形设计与分析. 哈尔滨工业大学学报. 2022(11): 22-30 . 百度学术

    其他类型引用(1)

  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1001
  • HTML全文浏览量:  707
  • PDF下载量:  176
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-07-27
  • 修回日期:  2022-03-23
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回