高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯原型网络的小样本逆合成孔径雷达目标识别

杨敏佳 白雪茹 刘士豪 曾磊 周峰

杨敏佳, 白雪茹, 刘士豪, 曾磊, 周峰. 基于高斯原型网络的小样本逆合成孔径雷达目标识别[J]. 电子与信息学报, 2022, 44(10): 3566-3573. doi: 10.11999/JEIT210724
引用本文: 杨敏佳, 白雪茹, 刘士豪, 曾磊, 周峰. 基于高斯原型网络的小样本逆合成孔径雷达目标识别[J]. 电子与信息学报, 2022, 44(10): 3566-3573. doi: 10.11999/JEIT210724
YANG Minjia, BAI Xueru, LIU Shihao, ZENG Lei, ZHOU Feng. Small-Data Inverse Synthetic Aperture Radar Object Recognition Based on Gaussian Prototypical Network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3566-3573. doi: 10.11999/JEIT210724
Citation: YANG Minjia, BAI Xueru, LIU Shihao, ZENG Lei, ZHOU Feng. Small-Data Inverse Synthetic Aperture Radar Object Recognition Based on Gaussian Prototypical Network[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3566-3573. doi: 10.11999/JEIT210724

基于高斯原型网络的小样本逆合成孔径雷达目标识别

doi: 10.11999/JEIT210724
基金项目: 国家自然科学基金(62131020, 61971332, 61631019)
详细信息
    作者简介:

    杨敏佳:男,博士生,研究方向为雷达目标识别

    白雪茹:女,教授,研究方向为高分辨雷达成像、雷达目标识别

    刘士豪:男,硕士生,研究方向为高分辨雷达成像

    曾磊:男,硕士生,研究方向为雷达目标识别

    周峰:男,教授,研究方向为电子对抗、雷达成像

    通讯作者:

    白雪茹 xrbai@xidian.edu.cn

  • 中图分类号: TN957

Small-Data Inverse Synthetic Aperture Radar Object Recognition Based on Gaussian Prototypical Network

Funds: The National Natural Science Foundation of China (62131020, 61971332, 61631019)
  • 摘要: 针对现有基于深度卷积神经网络(DCNNs)的逆合成孔径雷达(ISAR)目标识别方法在训练样本不足时性能下降甚至失效等问题,该文提出基于高斯原型网络(GPN)的小样本ISAR目标识别方法。该方法通过嵌入网络将ISAR像映射为嵌入向量,进而根据加权嵌入向量构建高斯原型,最终根据测试样本到原型的马氏距离预测目标类别。3类飞机目标实测数据的识别结果表明,该方法在小样本条件下可获得更高的平均识别精度。
  • 图  1  基于GPN的小样本ISAR目标识别流程图

    图  2  GPN中的DCNN结构

    图  3  5类飞机3D模型及对应的电磁仿真数据典型ISAR像(1 GHz带宽、4°积累角)

    图  4  F16不同积累角成像结果对比

    图  5  实测飞机光学图及典型ISAR图像

    图  6  训练集中5类不同型号飞机电磁仿真数据典型ISAR像的特征分布可视化结果与分布检验结果

    图  7  GPN嵌入向量的t-SNE可视化结果

    图  8  GPN识别结果统计直方图

    表  1  PN与GPN识别结果对比

    成像积累角模型类型测试准确率(%)标准差
    均值最大值最小值
    PN1-shot73.5589.1455.060.0772
    5-shot89.9595.6973.330.0299
    GPN1-shot74.3189.5145.690.0894
    5-shot92.5297.6577.250.0219
    PN1-shot75.7491.0149.810.0831
    5-shot90.5698.4372.550.0423
    GPN1-shot77.0589.8955.810.0836
    5-shot92.8298.4383.140.0274
    PN1-shot69.5290.2647.940.0819
    5-shot87.3694.5172.940.0343
    GPN1-shot70.0982.7743.820.0801
    5-shot91.9997.2576.080.0295
    下载: 导出CSV

    表  2  小样本条件下传统DCNN与GPN识别结果对比(%)

    模型1-shot5-shot
    DCNN (Layer=6)45.6968.24
    GPN (3°)74.3192.52
    GPN (4°)77.0592.82
    GPN (5°)70.0991.99
    下载: 导出CSV
  • [1] BAI Xueru, ZHOU Xuening, ZHANG Feng, et al. Robust Pol-ISAR target recognition based on ST-MC-DCNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9912–9927. doi: 10.1109/TGRS.2019.2930112
    [2] KANG Le, LUO Ying, ZHANG Qun, et al. 3-D scattering image sparse reconstruction via radar network[J]. IEEE Transactions on Geoscience and Remote Sensing, To be published.
    [3] ZHANG Shuanghui, LIU Yongxiang, LI Xiang, et al. Enhancing ISAR image efficiently via convolutional reweighted l1 minimization[J]. IEEE Transactions on Image Processing, 2021, 30: 4291–4304. doi: 10.1109/TIP.2021.3070442
    [4] 杨磊, 夏亚波, 毛欣瑶, 等. 基于分层贝叶斯Lasso的稀疏ISAR成像算法[J]. 电子与信息学报, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292

    YANG Lei, XIA Yabo, MAO Xinyao, et al. Sparse ISAR imaging algorithm based on Bayesian-lasso[J]. Journal of Electronics &Information Technology, 2021, 43(3): 623–631. doi: 10.11999/JEIT200292
    [5] LEE S J, LEE M J, KIM K T, et al. Classification of ISAR images using variable cross-range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2291–2303. doi: 10.1109/TAES.2018.2814211
    [6] BENEDEK C and MARTORELLA M. Moving target analysis in ISAR image sequences with a multiframe marked point process model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2234–2246. doi: 10.1109/TGRS.2013.2258927
    [7] PALADINI R, MARTORELLA M, and BERIZZI F. Classification of man-made targets via invariant coherency-matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3022–3034. doi: 10.1109/TGRS.2011.2116121
    [8] PARK S H, JUNG J H, KIM S H, et al. Efficient classification of ISAR images using 2D fourier transform and polar mapping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1726–1736. doi: 10.1109/TAES.2015.140184
    [9] MARTORELLA M, GIUSTI E, CAPRIA A, et al. Automatic target recognition by means of polarimetric ISAR images and neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3786–3794. doi: 10.1109/TGRS.2009.2025371
    [10] TOUMI A, HOUSSEINI A E, and KHENCHAF A. Aircrafts recognition using convolutional neurons network[C]. International Conference on Radar Systems, Belfast, UK, 2017: 1–4.
    [11] LIN Zhao, JI Kefeng, KANG Miao, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. doi: 10.1109/LGRS.2017.2698213
    [12] WANG Li, BAI Xueru, GONG Chen, et al. Hybrid inference network for few-shot SAR automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9257–9269. doi: 10.1109/TGRS.2021.3051024
    [13] WANG Yaqing, YAO Quanming, KWOK J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys, 2020, 53(3): 63.
    [14] KOCH G, ZEMEL R, SALAKHUTDINOV R, et al. Siamese neural networks for one-shot image recognition[C]. 32nd International Conference on Machine Learning, Lille, France, 2015: 1–27.
    [15] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. 30th International Conference on Neural Information Processing System, Barcelona, Spain, 2016: 3637–3645.
    [16] SNELL J, SWERSKY K, and ZEMEL R S. Prototypical networks for few-shot learning[C]. 31st International Conference on Neural Information Processing System, Long Beach, USA, 2017: 4080–4090.
    [17] FORT S. Gaussian prototypical networks for few-shot learning on omniglot[C]. Second workshop on Bayesian Deep Learning (NIPS 2017), Long Beach, USA, 2017: 1–10.
    [18] GLOROT X, BORDES A, and BENGIO Y. Deep sparse rectifier neural networks[C]. Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011: 315–323.
    [19] VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
    [20] WILK M B and GNANADESIKAN R. Probability plotting methods for the analysis of data[J]. Biometrika, 1968, 55(1): 1–17.
    [21] KINGMA D P and BA J L. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representation, San Diego, USA, 2015: 1–15.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  659
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-11-15
  • 录用日期:  2021-11-18
  • 网络出版日期:  2021-11-25
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回