高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法

徐勇军 高正念 王茜竹 周继华 黄东

徐勇军, 高正念, 王茜竹, 周继华, 黄东. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法[J]. 电子与信息学报, 2022, 44(7): 2317-2324. doi: 10.11999/JEIT210714
引用本文: 徐勇军, 高正念, 王茜竹, 周继华, 黄东. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法[J]. 电子与信息学报, 2022, 44(7): 2317-2324. doi: 10.11999/JEIT210714
XU Yongjun, GAO Zhengnian, WANG Qianzhu, ZHOU Jihua, HUANG Dong. Robust Energy Efficiency Maximization Algorithm for Intelligent Reflecting Surface-aided Wireless Powered-communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2317-2324. doi: 10.11999/JEIT210714
Citation: XU Yongjun, GAO Zhengnian, WANG Qianzhu, ZHOU Jihua, HUANG Dong. Robust Energy Efficiency Maximization Algorithm for Intelligent Reflecting Surface-aided Wireless Powered-communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2317-2324. doi: 10.11999/JEIT210714

基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法

doi: 10.11999/JEIT210714
基金项目: 国家自然科学基金(61601071, 62071078),国家重点研发计划(2019YFC1511300),重庆市自然科学基金(cstc2019jcyj-xfkxX0002),重庆市研究生科研创新项目(CYS21292,C YS21294)
详细信息
    作者简介:

    徐勇军:男,1986年生,副教授,硕士生导师,研究方向为异构无线网络、智能反射面、鲁棒资源分配等

    高正念:女,1994年生,硕士生,研究方向为智能反射面、资源分配

    王茜竹:女,1975年生,正高级工程师,硕士生导师,研究方向为智能反射面、资源分配

    周继华:男,1979年生,研究员,博士生导师,研究方向为移动网络、无线通信、5G/6G等

    黄东:男,1981年生,教授,博士生导师,研究方向为智慧网络、移动通信系统等

    通讯作者:

    周继华 jhzhou@ict.ac.cn

  • 中图分类号: TN929.5

Robust Energy Efficiency Maximization Algorithm for Intelligent Reflecting Surface-aided Wireless Powered-communication Networks

Funds: The National Natural Science Foundation of China (61601071, 62071078), The National Key Research and Development Program of China (2019YFC1511300), The Natural Science Foundation of Chongqing (cstc2019jcyj-xfkxX0002), The Graduate Scientific Research Innovation Project of Chongqing (CYS21292, CYS21294)
  • 摘要: 为了解决能量收集效率易受到障碍物阻挡和信道不确定性影响的问题,该文提出一种基于智能反射面(IRS)辅助的无线供电通信网络鲁棒能效(EE)最大化算法。首先,考虑最小收集能量、IRS相移、最小吞吐量等约束,基于有界信道不确定性,建立一个联合优化能量波束、相移、传输时间的多变量耦合非线性资源分配模型。然后,利用最坏准则、变量替换和S-Procedure等方法,将原非凸问题转换为确定性凸优化问题,同时,提出一种基于迭代的鲁棒能效最大化算法进行求解。仿真结果表明,与现有算法比较,该文算法具有较好的能效和鲁棒性。
  • 图  1  IRS辅助多用户WPCN

    图  2  系统能效收敛图

    图  3  系统能效与能量站最大发射功率在不同用户数下的关系

    图  4  系统能效与能量站最大发射功率在不同算法下的关系

    图  5  系统能效与吞吐量门限在不同算法下的关系

    图  6  系统能效与信道不确定性在不同算法下的关系

    图  7  中断概率与信道不确定性在不同算法下的关系

    表  1  基于迭代的鲁棒能效最大化算法

     初始化系统参数:$ M $, $ N $, $ K $, $ T $, $ P_{\text{B}}^{\text{C}} $, $ P_{\text{e}}^{\text{C}} $, $ p_k^{\text{C}} $, $ P_{\text{D}}^{\text{C}} $, $ {\bar {\boldsymbol{G}}_k} $, $ {\bar g_k} $, $ {\omega _k} $, $ {\sigma _k} $, $ R_k^{\min } $, $ \eta $, $ {P^{\max }} $, $ {q^{(0)}} $, $ {{\boldsymbol{v}}^{(0)}} $;设置收敛精度$ \varepsilon \ge 0 $,最大迭代次数$ {L_{\max }} $,
     初始化$ l \ge 0 $;
     (1) While $ \left| {{q^{(l)}} - {q^{(l - 1)}}} \right| \ge \varepsilon $或$l \le {L_{\max } }$ do
     (2) 设置迭代次数$ l = l + 1 $;
     (3) 固定$ {{\boldsymbol{v}}^{(l - 1)}} $,根据式(18)计算$ \left\{ {{{\boldsymbol{W}}^{(l)}},t_0^{(l)},t_k^{(l)},p_k^{(l)}} \right\} $;
     (4) 固定$ \left\{ {{{\boldsymbol{W}}^{(l)}},t_0^{(l)},t_k^{(l)},p_k^{(l)}} \right\} $,根据式(20)计算$ {{\boldsymbol{V}}^{(l)}} $;
     (5) 特征值分解$ {{\boldsymbol{V}}^{(l)}} = {\boldsymbol{U}}{\boldsymbol{\varLambda}} {\boldsymbol{U}} $, $ {{\boldsymbol{v}}^{(l)}} = {\boldsymbol{U}}{{\boldsymbol{\varLambda}} ^{(1/2)}}{\boldsymbol{r}} $;
     (6) 更新能效$ {q^{(l)}} = \frac{{\displaystyle\sum\limits_{k = 1}^K {{t_k}{{\log }_2}} \left( {1 + \frac{{{p_k}{{\tilde g}_k}}}{{{\delta ^2}}}} \right)}}{{{t_0}(P_{\text{B}}^{\text{C}} + NP_{\text{e}}^{\text{C}}) + \displaystyle\sum\limits_{k = 1}^K {({t_0} + {t_k})} p_k^{\text{C}} + {t_0}{\text{Tr(}}{\boldsymbol{W}}{\text{)}} - \displaystyle\sum\limits_{k = 1}^K {{\chi _k}} + \displaystyle\sum\limits_{k = 1}^K {{t_k}{p_k}} + \displaystyle\sum\limits_{k = 1}^K {{t_k}P_{\text{D}}^{\text{C}}} }} $;
     (7) End While
    下载: 导出CSV
  • [1] 徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics &Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175
    [2] XU Yongjun, GAO Zhengnian, WANG Zhengqiang, et al. RIS-enhanced WPCNs: Joint radio resource allocation and passive beamforming optimization[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7980–7991. doi: 10.1109/TVT.2021.3096603
    [3] 李国权, 徐勇军, 陈前斌. 基于干扰效率多蜂窝异构无线网络最优基站选择及功率分配算法[J]. 电子与信息学报, 2020, 42(4): 957–964. doi: 10.11999/JEIT190419

    LI Guoquan, XU Yongjun, and CHEN Qianbin. Interference efficiency-based base station selection and power allocation algorithm for multi-cell heterogeneous wireless networks[J]. Journal of Electronics &Information Technology, 2020, 42(4): 957–964. doi: 10.11999/JEIT190419
    [4] XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896
    [5] XIE Lifeng, XU Jie, and ZHANG Rui. Throughput maximization for UAV-enabled wireless powered communication networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1690–1703. doi: 10.1109/JIOT.2018.2875446
    [6] DI Xiaofei, XIONG Ke, FAN Pingyi, et al. Optimal resource allocation in wireless powered communication networks with user cooperation[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 7936–7949. doi: 10.1109/TWC.2017.2754494
    [7] CHU Zheng, ZHOU Fuhui, ZHU Zhengyu, et al. Energy beamforming design and user cooperation for wireless powered communication networks[J]. IEEE Wireless Communications Letters, 2017, 6(6): 750–753. doi: 10.1109/LWC.2017.2739148
    [8] WU Qingqing, TAO Meixia, NG D W K, et al. Energy-efficient resource allocation for wireless powered communication networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(3): 2312–2327. doi: 10.1109/TWC.2015.2502590
    [9] BOSHKOVSKA E, NG D W K, ZLATANOV N, et al. Robust resource allocation for MIMO wireless powered communication networks based on a non-linear EH model[J]. IEEE Transactions on Communications, 2017, 65(5): 1984–1999. doi: 10.1109/TCOMM.2017.2664860
    [10] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [11] GONG Shimin, LU Xiao, HOANG D T, et al. Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(4): 2283–2314. doi: 10.1109/COMST.2020.3004197
    [12] WU Qingqing, ZHOU Xiaobo, and SCHOBER R. IRS-assisted wireless powered NOMA: Do we really need different phase shifts in DL and UL?[J]. IEEE Wireless Communications Letters, 2021, 10(7): 1493–1497. doi: 10.1109/LWC.2021.3072502
    [13] ZHENG Yuan, BI Suzhi, ZHANG Yingjun, et al. Intelligent reflecting surface enhanced user cooperation in wireless powered communication networks[J]. IEEE Wireless Communications Letters, 2020, 9(6): 901–905. doi: 10.1109/LWC.2020.2974721
    [14] ZHENG Yuan, BI Suzhi, ZHANG Y J A, et al. Joint beamforming and power control for throughput maximization in IRS-assisted MISO WPCNs[J]. IEEE Internet of Things Journal, 2021, 8(10): 8399–8410. doi: 10.1109/JIOT.2020.3045703
    [15] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [16] XU Yongjun, ZHAO Xiaohui, and LIANG Yingchang. Robust power control and beamforming in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 1834–1857. doi: 10.1109/COMST.2015.2425040
    [17] XU Yongjun, LI Guoquan, YANG Yang, et al. Robust resource allocation and power splitting in SWIPT enabled heterogeneous networks: A robust minimax approach[J]. IEEE Internet of Things Journal, 2019, 6(6): 10799–10811. doi: 10.1109/JIOT.2019.2941897
    [18] XU Yongjun, XIE Hao, LIANG Chengchao, et al. Robust secure energy efficiency optimization in SWIPT-aided heterogeneous networks with a non-linear energy harvesting model[J]. IEEE Internet of Things Journal, 2021, 19(8): 14908–14919. doi: 10.1109/JIOT.2021.3072965
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2715
  • HTML全文浏览量:  841
  • PDF下载量:  358
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-09-11
  • 网络出版日期:  2021-09-26
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回