高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于跨模态空间匹配的多模态肺部肿块分割网络

李家忻 陈后金 彭亚辉 李艳凤

李家忻, 陈后金, 彭亚辉, 李艳凤. 基于跨模态空间匹配的多模态肺部肿块分割网络[J]. 电子与信息学报, 2022, 44(1): 11-17. doi: 10.11999/JEIT210710
引用本文: 李家忻, 陈后金, 彭亚辉, 李艳凤. 基于跨模态空间匹配的多模态肺部肿块分割网络[J]. 电子与信息学报, 2022, 44(1): 11-17. doi: 10.11999/JEIT210710
LI Jiaxin, CHEN Houjin, PENG Yahui, LI Yanfeng. Multi-Modal Pulmonary Mass Segmentation Network Based on Cross-Modal Spatial Alignment[J]. Journal of Electronics & Information Technology, 2022, 44(1): 11-17. doi: 10.11999/JEIT210710
Citation: LI Jiaxin, CHEN Houjin, PENG Yahui, LI Yanfeng. Multi-Modal Pulmonary Mass Segmentation Network Based on Cross-Modal Spatial Alignment[J]. Journal of Electronics & Information Technology, 2022, 44(1): 11-17. doi: 10.11999/JEIT210710

基于跨模态空间匹配的多模态肺部肿块分割网络

doi: 10.11999/JEIT210710
基金项目: 国家自然科学基金 (62172029, 61872030, 61771039)
详细信息
    作者简介:

    李家忻:男,1993年生,博士生,研究方向为图像分析、深度学习

    陈后金:男,1965年生,教授,博士生导师,研究方向为数字图像处理、模式识别

    彭亚辉:男,1975年生,教授,博士生导师,研究方向为模式识别、图像处理

    李艳凤:女,1988年生,副教授,博士生导师,研究方向为图像处理、机器学习

    通讯作者:

    陈后金 hjchen@bjtu.edu.cn

  • 中图分类号: TN911.73; TP391.41

Multi-Modal Pulmonary Mass Segmentation Network Based on Cross-Modal Spatial Alignment

Funds: The National Natural Science Foundation of China (62172029, 61872030, 61771039)
  • 摘要: 现有多模态分割方法通常先对图像进行配准,再对配准后的图像进行分割。对于成像特点差异较大的不同模态,两阶段的结构匹配与分割算法下的分割精度较低。针对该问题,该文提出一种基于跨模态空间匹配的多模态肺部肿块分割网络(MMSASegNet),其具有模型复杂度低和分割精度高的特点。该模型采用双路残差U型分割网络作为骨干分割网络,以充分提取不同模态输入特征,利用可学习的空间变换网络对其输出的多模态分割掩膜进行空间结构匹配;为实现空间匹配后的多模态特征图融合,形变掩膜和参考掩膜分别与各自模态相同分辨率的特征图进行矩阵相乘,并经特征融合模块,最终实现多模态肺部肿块分割。为提高端到端多模态分割网络的分割性能,采用深度监督学习策略,联合损失函数约束肿块分割、肿块空间匹配和特征融合模块,同时采用多阶段训练以提高不同功能模块的训练效率。实验数据采用T2权重(T2W)磁共振图像和扩散权重磁共振图像(DWI)肺部肿块分割数据集,该方法与其他多模态分割网络相比,DSC (Dice Similarity Coefficient)和HD (Hausdorff Distance)等评价指标均显著提高。
  • 图  1  多模态空间匹配分割联合训练模型

    图  2  空间变换网络

    图  3  肺部肿块分割结果定性分析

    表  1  多阶段训练超参数设置

    0~30期30~50期50~55期55~100期
    学习率0.0010.00010.00010.001
    $ \alpha $00.60.50.5
    $ \beta $11.50.50.5
    下载: 导出CSV

    表  2  消融实验在测试集的测试结果(即五折交叉验证结果的平均值)

    ModelDSC精确度灵敏度HD95 (pixels)
    Dual-path Res-UNet0.828(±0.096)0.8350.8653.19
    MMSASegNet0.854(±0.074)0.8620.8753.01
    下载: 导出CSV

    表  3  对比实验在测试集的测试结果(即五折交叉验证结果的平均值)

    ModelParams.DSC精确度灵敏度HD95 (pixels)训练时间(h)测试时间(s)
    HDUNet [7]24M0.829(±0.110)0.8290.87118.12100.45
    HDUNet [7] with registration0.817(±0.121)0.7920.89218.93
    Image-fusion Res-UNet [17]33M0.774(±0.142)0.8040.80119.5750.50
    Image-fusion Res-UNet [17] with registration0.786(±0.135)0.8290.79819.35
    DAFNet [13]52M0.510(±0.207)0.6660.48027.43140.05
    MMSASegNet52M0.854(±0.074)0.8620.8753.0170.04
    下载: 导出CSV
  • [1] ALAM F and RAHMAN S U. Challenges and solutions in multimodal medical image subregion detection and registration[J]. Journal of Medical Imaging and Radiation Sciences, 2019, 50(1): 24–30. doi: 10.1016/j.jmir.2018.06.001
    [2] HASKINS G, KRUGER U, and YAN Pingkun. Deep learning in medical image registration: A survey[J]. Machine Vision and Applications, 2020, 31(1/2): 8. doi: 10.1007/s00138-020-01060-x
    [3] ONG E P, CHENG Jun, WONG D W K, et al. A robust outliers’ elimination scheme for multimodal retina image registration using constrained affine transformation[C]. The TENCON 2018 - 2018 IEEE Region 10 Conference, Jeju, Korea (South), 2018: 425–429.
    [4] WANG Xiaoyan, MAO Lizhao, HUANG Xiaojie, et al. Multimodal MR image registration using weakly supervised constrained affine network[J]. Journal of Modern Optics, 2021, 68(13): 679–688. doi: 10.1080/09500340.2021.1939897
    [5] RUECKERT D, SONODA L I, HAYES C, et al. Nonrigid registration using free-form deformations: Application to breast MR images[J]. IEEE Transactions on Medical Imaging, 1999, 18(8): 712–721. doi: 10.1109/42.796284
    [6] DOLZ J, GOPINATH K, YUAN Jing, et al. HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(5): 1116–1126. doi: 10.1109/TMI.2018.2878669
    [7] LI Jiaxin, CHEN Houjin, LI Yanfeng, et al. A novel network based on densely connected fully convolutional networks for segmentation of lung tumors on multi-modal MR images[C]. The 2019 International Conference on Artificial Intelligence and Advanced Manufacturing, Dublin, Ireland, 2019: 69.
    [8] CAI Naxin, CHEN Houjin, LI Yanfeng, et al. Adaptive weighting landmark-based group-wise registration on lung DCE-MRI images[J]. IEEE Transactions on Medical Imaging, 2021, 40(2): 673–687. doi: 10.1109/TMI.2020.3035292
    [9] ZHU Wentao, MYRONENKO A, XU Ziyue, et al. NeurReg: Neural registration and its application to image segmentation[C]. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, USA, 2020: 3606–3615.
    [10] LIU Jie, XIE Hongzhi, ZHANG Shuyang, et al. Multi-sequence myocardium segmentation with cross-constrained shape and neural network-based initialization[J]. Computerized Medical Imaging and Graphics, 2019, 71: 49–57. doi: 10.1016/j.compmedimag.2018.11.001
    [11] XU R S, ATHAVALE P, LU Yingli, et al. Myocardial segmentation in late-enhancement MR images via registration and propagation of cine contours[C]. The 10th International Symposium on Biomedical Imaging, San Francisco, USA, 2013: 856–859.
    [12] ZHUANG Xiahai. Multivariate mixture model for myocardial segmentation combining multi-source images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 2933–2946. doi: 10.1109/TPAMI.2018.2869576
    [13] CHARTSIAS A, PAPANASTASIOU G, WANG Chengjia, et al. Disentangle, align and fuse for multimodal and semi-supervised image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(3): 781–792. doi: 10.1109/TMI.2020.3036584
    [14] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 2017–2025.
    [15] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015.
    [16] LEE C Y, XIE Saining, GALLAGHER P W, et al. Deeply-supervised nets[C]. The 18th International Conference on Artificial Intelligence and Statistics (AISTATS), San Diego, USA, 2015.
    [17] KHANNA A, LONDHE N D, GUPTA S, et al. A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images[J]. Biocybernetics and Biomedical Engineering, 2020, 40(3): 1314–1327. doi: 10.1016/j.bbe.2020.07.007
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  339
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-10-20
  • 录用日期:  2021-11-20
  • 网络出版日期:  2021-12-25
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回