高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CAEFi:基于卷积自编码器降维的信道状态信息指纹室内定位方法

王旭东 刘帅 吴楠

王旭东, 刘帅, 吴楠. CAEFi:基于卷积自编码器降维的信道状态信息指纹室内定位方法[J]. 电子与信息学报, 2022, 44(8): 2757-2766. doi: 10.11999/JEIT210663
引用本文: 王旭东, 刘帅, 吴楠. CAEFi:基于卷积自编码器降维的信道状态信息指纹室内定位方法[J]. 电子与信息学报, 2022, 44(8): 2757-2766. doi: 10.11999/JEIT210663
WANG Xudong, LIU Shuai, WU Nan. CAEFI: Channel State Information Fingerprint Indoor Location Method Using Convolutional Autoencoder for Dimension Reduction[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2757-2766. doi: 10.11999/JEIT210663
Citation: WANG Xudong, LIU Shuai, WU Nan. CAEFI: Channel State Information Fingerprint Indoor Location Method Using Convolutional Autoencoder for Dimension Reduction[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2757-2766. doi: 10.11999/JEIT210663

CAEFi:基于卷积自编码器降维的信道状态信息指纹室内定位方法

doi: 10.11999/JEIT210663
基金项目: 国家自然基金(61371091)
详细信息
    作者简介:

    王旭东:男,1967年生,博士,教授,研究方向为MIMO无线通信、空间调制、光无线通信及定位

    刘帅:男,1996年生,硕士生,研究方向为无线室内定位

    吴楠:男,1979年生,博士,副教授,研究方向为现代移动无线通信系统、可见光通信系统(包括MIMO、OFDM、信道编码、协作通信、自组织网络)等

    通讯作者:

    吴楠 alfred.nan.wu@gmail.com

  • 中图分类号: TN929.1

CAEFI: Channel State Information Fingerprint Indoor Location Method Using Convolutional Autoencoder for Dimension Reduction

Funds: The National Natural Science Foundation of China (61371091)
  • 摘要: 针对提高Wi-Fi指纹室内定位技术性能,该文首先提出一种基于卷积神经网络(CNN)的信道状态信息(CSI)指纹室内定位方法。该方法在离线阶段联合CSI幅度差和相位差信息对CNN模型进行训练。在廊厅和实验室两种不同室内定位场景进行了定位实验,分别获得了25 cm和48 cm的平均定位误差;然后,在此基础上重点针对提高基于CNN的CSI室内定位时效性,引入卷积自编码器(CAE)实现CSI的降维处理,在保证原始定位方法精度的前提下,定位时间提高了40%,同时将内存消耗降低到原算法的1/15,实验结果验证了所提算法的有效性。
  • 图  1  CNNFi系统结构

    图  2  CNNFi误差收敛情况

    图  3  卷积自编码网络结构

    图  4  CAEFi系统结构

    图  5  廊厅场景

    图  6  实验室场景

    图  7  廊厅误差累计分布图

    图  8  实验室误差累计分布图

    图  9  幅度与幅度差的平均定位误差

    图  10  相位差的差值对比图

    图  11  CSI降维平均定位误差

    图  12  不同维度的平均定位误差

    图  13  不同测试数据个数的平均定位误差

    表  1  CNN网络参数

    网络层参数输出维度
    输入层训练数据(30,30,3,m)
    2维卷积层1Conv 2D,fs=5,s=1,padding=same(30,30,16,m)
    2维卷积层2Conv 2D,fs=5,s=1,padding=same(30,30,16,m)
    2维卷积层3Conv 2D,fs=2,s=2,padding=valid(15,15,32,m)
    2维卷积层4Conv 2D,fs=5,s=1,padding=same(15,15,32,m)
    平坦层K=7200(7200,m)
    全连接层1K=1024(1024,m)
    全连接层2K=512(512,m)
    输出层K=Nrp(Nrp,m)
    下载: 导出CSV

    表  2  CAE网络参数

    网络层参数输出维度
    输入层训练数据(90,1,m)
    1维卷积层1Conv 1D,fs=5,s=1,padding=same(90,64,m)
    1维池化层1Maxpool 1D,s=2,padding=same(45,64,m)
    1维卷积层2Conv 1D,fs=5,s=1,padding=same(45,32,m)
    1维池化层2Maxpool 1D,s=2,padding=same(23,32,m)
    1维卷积层3Conv 1D,fs=5,s=1,padding=same(23,32,m)
    1维池化层3Maxpool 1D,s=2,padding=same(12,32,m)
    1维卷积层4Conv 1D,fs=5,s=1,padding=same(12,12,m)
    1维卷积层5Conv 1D,fs=3,s=1,padding=valid(10,10,m)
    1维上采样层1Upsampool 1D,size=2(20,10,m)
    1维卷积层6Conv 1D,fs=9,s=1,padding=valid(12,12,m)
    1维上采样层2Upsampool 1D,size=2(24,12,m)
    1维卷积层7Conv 1D,fs=2,s=1,padding=valid(23,23,m)
    1维上采样层3Upsampool 1D,size=2(46,23,m)
    1维卷积层8Conv 1D,fs=2,s=1,padding=valid(45,32,m)
    1维上采样层4Upsampool 1D,size=2(90,32,m)
    1维卷积层9Conv 1D,fs=5s=1,padding=same(90,64,m)
    输出层Conv 1D,fs=5,s=1,padding=same(90,1,m)
    下载: 导出CSV

    表  3  廊厅定位误差

    定位算法平均误差(m)标准差(m)
    CNNFi combine0.250.58
    CNNFi single0.731.24
    CiFi1.091.28
    DeepFi0.991.62
    PhaseFi1.101.53
    ImageFi0.931.34
    下载: 导出CSV

    表  4  实验室定位误差

    定位算法平均误差(m)标准差(m)
    CNNFi combine AP=20.480.86
    CNNFi combine AP=10.720.86
    CNNFi single1.151.22
    CiFi1.361.14
    DeepFi1.451.21
    PhaseFi1.711.43
    ImageFi1.671.47
    下载: 导出CSV

    表  5  3种神经网络的训练参数

    神经网络可训练参数非训练参数总参数
    CNNFi794441432647947678
    Auto Encoder16121016121
    CAE-CNN4904941344491838
    下载: 导出CSV

    表  6  两种定位方法的在线定位时间与内存大小

    定位方法Matlab运行
    时间(s)
    Python运行
    时间(s)
    总运行
    时间(s)
    内存大小
    (MB)
    CNNFi0.12690.13990.266891
    CAEFi0.00620.15980.16605.7898
    下载: 导出CSV
  • [1] ALI M U, HUR S, and PARK Y. Poster abstract: IoT enabled Wi-Fi indoor positioning system using raster maps[C]. The 18th ACM/IEEE International Conference on Information Processing in Sensor Networks, Montreal, Canada, 2019: 327–328.
    [2] REZAZADEH J, SUBRAMANIAN R, SANDRASEGARAN K, et al. Novel iBeacon placement for indoor positioning in IoT[J]. IEEE Sensors Journal, 2018, 18(24): 10240–10247. doi: 10.1109/JSEN.2018.2875037
    [3] TORRES-SOSPEDRA J, JIMÉNEZ A R, MOREIRA A, et al. Off-line evaluation of mobile-centric indoor positioning systems: The experiences from the 2017 IPIN competition[J]. Sensors, 2018, 18(2): 487. doi: 10.3390/s18020487
    [4] ZHANG Daqiang, ZHAO Shengjie, YANG L T, et al. NextMe: Localization using cellular traces in internet of things[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 302–312. doi: 10.1109/TII.2015.2389656
    [5] PAK J M, AHN C K, SHMALIY Y S, et al. Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/FIR filtering[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1089–1098. doi: 10.1109/TII.2015.2462771
    [6] ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017: 3357–3364.
    [7] DARDARI D, CLOSAS P, and, DJURIĆ P M. Indoor tracking: Theory, methods, and technologies[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1263–1278. doi: 10.1109/TVT.2015.2403868
    [8] WISANMONGKOL J, KLINKUSOOM L, SANPECHUDA T, et al. Multipath mitigation for RSSI-based Bluetooth low energy localization[C]. The 19th International Symposium on Communications and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, 2019: 47–51.
    [9] ABBAS M, ELHAMSHARY M, RIZK H, et al. WiDeep: WiFi-based accurate and robust indoor localization system using deep learning[C]. 2019 IEEE International Conference on Pervasive Computing and Communications, Kyoto, Japan, 2019: 1–10.
    [10] FENG Daquan, WANG Chunqi, HE Chunlong, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation[J]. IEEE Internet of Things Journal, 2020, 7(4): 3133–3146. doi: 10.1109/JIOT.2020.2965115
    [11] PEREKADAN V, MUKHERJEE T, BANERJEE C, et al. RF-MSiP: Radio frequency multi-source indoor positioning[C]. 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, USA, 2019: 5259–5268.
    [12] 许浩, 王旭东, 吴楠. 基于卷积神经网络的室内可见光指纹定位方法[J]. 激光与光电子学进展, 2021, 58(17): 1706008.

    XU Hao, WANG Xudong, and WU Nan. Indoor visible light fingerprint positioning scheme based on convolution neural network[J]. Laser &Optoelectronics Progress, 2021, 58(17): 1706008.
    [13] SINGH V, AGGARWAL G, and UJWAL B V S. Ensemble based real-time indoor localization using stray WiFi signal[C]. 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, USA, 2018: 1–5.
    [14] KHALAJMEHRABADI A, GATSIS N, and AKOPIAN D. Modern WLAN fingerprinting indoor positioning methods and deployment challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1974–2002. doi: 10.1109/COMST.2017.2671454
    [15] ACHROUFENE A, AMIRAT Y, and CHIBANI A. RSS-based indoor localization using belief function theory[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1163–1180. doi: 10.1109/TASE.2018.2873800
    [16] SOHAN A A, ALI M, FAIROOZ F, et al. Indoor positioning techniques using RSSI from wireless devices[C]. The 22nd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 2019: 1–6.
    [17] BAHL P and PADMANABHAN V N. RADAR: An in-building RF-based user location and tracking system[C]. IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 2000: 775–784.
    [18] YOUSSEF M and ASHOK A. The Horus location determination system[J]. Wireless Networks, 2008, 14(3): 357–374. doi: 10.1007/s11276-006-0725-7
    [19] HOANG M T, YUEN B, DONG Xiaodai, et al. Recurrent neural networks for accurate RSSI indoor localization[J]. IEEE Internet of Things Journal, 2019, 6(6): 10639–10651. doi: 10.1109/JIOT.2019.2940368
    [20] WANG Xuyu, GAO Lingjun, and MAO Shiwen. CSI phase fingerprinting for indoor localization with a deep learning approach[J]. IEEE Internet of Things Journal, 2016, 3(6): 1113–1123. doi: 10.1109/JIOT.2016.2558659
    [21] HALPERIN D, HU Wenjun, SHETH A, et al. Predictable 802.11 packet delivery from wireless channel measurements[J]. ACM SIGCOMM Computer Communication Review, 2010, 40(4): 159–170. doi: 10.1145/1851275.1851203
    [22] XIE Yaxiong, LI Zhenjiang, and LI Mo. Precise power delay profiling with commodity Wi-Fi[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1342–1355. doi: 10.1109/TMC.2018.2860991
    [23] WU Kaishun, XIAO Jiang, YI Youwen, et al. CSI-based indoor localization[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(7): 1300–1309. doi: 10.1109/TPDS.2012.214
    [24] WANG Xuyu, GAO Lingjun, MAO Shiwen, et al. DeepFi: Deep learning for indoor fingerprinting using channel state information[C]. 2015 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2015: 1666–1671.
    [25] WANG Xuyu, WANG Xiangyu, and MAO Shiwen. CiFi: Deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi[C]. Proceedings of 2017 IEEE International Conference on Communications (ICC), Paris, France, 2017: 1–6.
    [26] 江小平, 王妙羽, 丁昊, 等. 基于信道状态信息幅值-相位的被动式室内指纹定位[J]. 电子与信息学报, 2020, 42(5): 1165–1171. doi: 10.11999/JEIT180871

    JIANG Xiaoping, WANG Miaoyu, DING Hao, et al. Passive fingerprint indoor positioning based on CSI amplitude-phase[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1165–1171. doi: 10.11999/JEIT180871
    [27] LI Haihan, ZENG Xiangsheng, LI Yunzhou, et al. Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images[J]. China Communications, 2019, 16(9): 250–260. doi: 10.23919/JCC.2019.09.019
    [28] SHI Shuyu, SIGG S, CHEN Lin, et al. Accurate location tracking from CSI-based passive device-free probabilistic fingerprinting[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5217–5230. doi: 10.1109/TVT.2018.2810307
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  1050
  • HTML全文浏览量:  612
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 修回日期:  2021-10-28
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回