高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位补偿的非理想无线轨道角动量复用通信系统研究

王洋 修艳磊 胡韬 施盼盼 廖希

王洋, 修艳磊, 胡韬, 施盼盼, 廖希. 基于相位补偿的非理想无线轨道角动量复用通信系统研究[J]. 电子与信息学报, 2022, 44(9): 3212-3219. doi: 10.11999/JEIT210626
引用本文: 王洋, 修艳磊, 胡韬, 施盼盼, 廖希. 基于相位补偿的非理想无线轨道角动量复用通信系统研究[J]. 电子与信息学报, 2022, 44(9): 3212-3219. doi: 10.11999/JEIT210626
WANG Yang, XIU Yanlei, HU Tao, SHI Panpan, LIAO Xi. Research on Non-ideal Wireless Orbital Angular Momentum Multiplexing Communication System Based on Phase Compensation[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3212-3219. doi: 10.11999/JEIT210626
Citation: WANG Yang, XIU Yanlei, HU Tao, SHI Panpan, LIAO Xi. Research on Non-ideal Wireless Orbital Angular Momentum Multiplexing Communication System Based on Phase Compensation[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3212-3219. doi: 10.11999/JEIT210626

基于相位补偿的非理想无线轨道角动量复用通信系统研究

doi: 10.11999/JEIT210626
基金项目: 国家自然科学基金(62171071),重庆市自然科学基金(cstc2019jcyj-msxmX0288),重庆市教委科学技术研究计划项目(KJQN202103102)
详细信息
    作者简介:

    王洋:男,副教授,博士,研究方向为无线轨道角动量通信、信道建模、智能信息调制表面等

    修艳磊:男,硕士生,研究方向为轨道角动量信道建模

    胡韬:男,博士生,研究方向为无线轨道角动量通信

    施盼盼:男,硕士生,研究方向为室内轨道角动量信道建模

    廖希:女,副教授,博士,研究方向为电波传播、射频与微波电子学、信道建模等

    通讯作者:

    修艳磊 s190101014@stu.cqupt.edu.cn

  • 中图分类号: TN928

Research on Non-ideal Wireless Orbital Angular Momentum Multiplexing Communication System Based on Phase Compensation

Funds: The National Natural Science Foundation of China (62171071), The Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0288), The Science and Technology Research Project of Chongqing Municipal Education Commission (KJQN202103102)
  • 摘要: 电磁波轨道角动量各模态间满足严格正交性,为无线通信系统提供了一个新的复用维度。当前无线轨道角动量通信的研究仍集中于理想视距(LoS)场景,在实际通信场景中,多径效应和非对齐效应等非理想传输情况通常是无法避免的,这会使得无线轨道角动量多入多出(OAM-MIMO)通信系统的性能遭受较大损失。为提升非理想无线OAM-MIMO通信系统性能,该文建模了一种更加符合实际传输场景的毫米波OAM-MIMO 10射线信道模型;然后评估了多径效应和非对齐效应带来的性能损失问题;最后,提出了一种低复杂度的平均相位补偿与迭代功率分配(APC-IPA)联合优化方案来消除非对齐和多径效应造成的相位偏差,提升系统信道容量。仿真结果表明:在同时遭受非对齐和多径效应时,所提APC-IPA联合方案能够有效地提升系统信道容量。
  • 图  1  基于未对齐收发天线阵列的街道峡谷OAM-MIMO 10射线传播模型

    图  2  不同路径下的信道容量比较

    图  3  不同方案下信道容量随信噪比的变化曲线

    图  4  算法迭代次数随OAM子信道数的变化曲线

    图  5  LoS路径与反射路径下信道容量随信噪比的变化曲线

    表  1  IPA算法

     初始化:L, $ {P_{\text{t}}} $, $ {{\mathbf{H}}_{{\text{OAM}}}} $, ε, i = 1
     (1) 根据式(30)计算相位补偿矩阵Q
     (2) 根据式(31)更新OAM信道矩阵$ {{\mathbf{H}}_{{\text{OAM}}}} $;
     (3) For l = 1:L
     (4)  计算$ \rho _l^{(0)} = {{{P_{\text{t}}}} \mathord{\left/ {\vphantom {{{P_{\text{t}}}} N}} \right. } N} $,根据式(16)计算$ {\text{SINR}}_l^{(0)} $;
     (5) End for
     (6) 根据式(17)和式(32)计算$ {C^{(0)}} $和$ {u^{(0)}} $;
     (7) For l = 1:L
     (8)  根据式(16)和式(33)更新$ {\text{SINR}}_l^{(i)} $和$ \rho _l^{(i)} $;
     (9) End for
     (10) 根据式(17)更新$ {C^{(i)}} $;
     (11) If $ {C^{(i)}} - {C^{(i - 1)}} > \varepsilon $,then
     (12)  根据式(32)更新$ {u^{(i)}} $;
     (13)  i = i+1,回到步骤(7);
     (14) Else
     (15)  Break;
     (16) End if
     (17) 输出最终的功率分配方案$ \left\{ {{\rho _1},{\rho _2},\cdots,{\rho _L}} \right\} $。
    下载: 导出CSV
  • [1] 孙学宏, 李强, 庞丹旭, 等. 轨道角动量在无线通信中的研究新进展综述[J]. 电子学报, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025

    SUN Xuehong, LI Qiang, PANG Danxu, et al. New research progress of the orbital angular momentum technology in wireless communication: A survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025
    [2] 廖希, 周晨虹, 王洋, 等. 面向无线通信的轨道角动量关键技术研究进展[J]. 电子与信息学报, 2020, 42(7): 1666–1677. doi: 10.11999/JEIT190372

    LIAO Xi, ZHOU Chenhong, WANG Yang, et al. A survey of orbital angular momentum in wireless communication[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1666–1677. doi: 10.11999/JEIT190372
    [3] WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G wireless channel measurements and models: Trends and challenges[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 22–32. doi: 10.1109/MVT.2020.3018436
    [4] 赵林军, 张海林, 刘乃安. 涡旋电磁波无线通信技术的研究进展[J]. 电子与信息学报, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899

    ZHAO Linjun, ZHANG Hailin, and LIU Naian. Research status of vortex electromagnetic wave wireless communication technologies[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3075–3085. doi: 10.11999/JEIT200899
    [5] EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142
    [6] 王洋, 崔健, 廖希, 等. 基于信号检测的光无线轨道角动量复用系统研究[J]. 电子与信息学报, 2021, 43(11): 3156–3165. doi: 10.11999/JEIT200955

    WANG Yang, CUI Jian, LIAO Xi, et al. Research on optical wireless orbital angular momentum multiplexing system based on signal detection[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3156–3165. doi: 10.11999/JEIT200955
    [7] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [8] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    [9] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14: 033001. doi: 10.1088/1367-2630/14/3/033001
    [10] OPARE K A and KUANG Yujun. Performance of an ideal wireless orbital angular momentum communication system using multiple-input multiple-output techniques[C]. 2014 International Conference on Telecommunications and Multimedia, Heraklion, Greece, 2014: 144–149.
    [11] REN Yongxiong, LI Long, XIE Guodong, et al. Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 3151–3161. doi: 10.1109/TWC.2017.2675885
    [12] JIE Wenjun, WANG Yang, HU Tao, et al. Propagation model for UCA-based OAM communications in six-ray canyon channels[C]. The 2020 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 2020: 1–4.
    [13] YAN Yan, LI Long, XIE Guodong, et al. Multipath effects in millimetre-wave wireless communication using orbital angular momentum multiplexing[J]. Scientific Reports, 2016, 6: 33482. doi: 10.1038/srep33482
    [14] LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787
    [15] SHIN D, PARK E, KANG J, et al. Identification of non-ideal receiver condition for orbital angular momentum transmission[C]. The 2014 IEEE 79th Vehicular Technology Conference, Seoul, Korea, 2014: 1–5.
    [16] CHEN Rui, XU Hui, MORETTI M, et al. Beam steering for the misalignment in UCA-based OAM communication systems[J]. IEEE Wireless Communications Letters, 2018, 7(4): 582–585. doi: 10.1109/LWC.2018.2797931
    [17] JING Haiyue, CHENG Wenchi, and XIA Xianggen. A simple channel independent beamforming scheme with parallel uniform circular array[J]. IEEE Communications Letters, 2019, 23(3): 414–417. doi: 10.1109/LCOMM.2019.2892114
    [18] ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078
    [19] HU Tao, WANG Yang, LIAO Xi, et al. OAM-based beam selection for indoor millimeter wave MU-MIMO systems[J]. IEEE Communications Letters, 2021, 25(5): 1702–1706. doi: 10.1109/LCOMM.2021.3049457
    [20] HU Tao, WANG Yang, MA Bo, et al. Orbit angular momentum MIMO with mode selection for UAV-assisted A2G networks[J]. Sensors, 2020, 20(8): 2289. doi: 10.3390/s20082289
    [21] ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi: 10.1109/TWC.2016.2645199
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  89
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 录用日期:  2022-03-10
  • 修回日期:  2022-02-28
  • 网络出版日期:  2022-03-20
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回