高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进矩阵束的超宽带一维散射中心提取方法

魏少明 洪文衍 王俊 耿雪胤 金明明

魏少明, 洪文衍, 王俊, 耿雪胤, 金明明. 基于改进矩阵束的超宽带一维散射中心提取方法[J]. 电子与信息学报, 2022, 44(4): 1231-1240. doi: 10.11999/JEIT210602
引用本文: 魏少明, 洪文衍, 王俊, 耿雪胤, 金明明. 基于改进矩阵束的超宽带一维散射中心提取方法[J]. 电子与信息学报, 2022, 44(4): 1231-1240. doi: 10.11999/JEIT210602
WEI Shaoming, HONG Wenyan, WANG Jun, GENG Xueyin, JIN Mingming. Extracting UWB One-Dimensional Scattering Center Based on Improved Matrix Pencil[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1231-1240. doi: 10.11999/JEIT210602
Citation: WEI Shaoming, HONG Wenyan, WANG Jun, GENG Xueyin, JIN Mingming. Extracting UWB One-Dimensional Scattering Center Based on Improved Matrix Pencil[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1231-1240. doi: 10.11999/JEIT210602

基于改进矩阵束的超宽带一维散射中心提取方法

doi: 10.11999/JEIT210602
基金项目: 国家自然科学基金(61671035),重点实验室基金(6142502180103)
详细信息
    作者简介:

    魏少明:男,1985年生,实验师,硕士生导师,研究方向为超宽带目标散射参数高精度提取、数据关联、目标3维重构等

    洪文衍:男,1996年生,硕士生,研究方向为阵列信号处理、TDM-MIMO雷达3维成像等

    王俊:男,1972年生,教授,博士生导师,研究方向为雷达信号处理、实时信号处理等

    耿雪胤:男,1996年生,博士生,研究方向为毫米波雷达前视超分辨3维成像等

    金明明:男,1994年生,博士生,研究方向为分布式3维成像、异质传感器数据融合、决策分析等

    通讯作者:

    魏少明 shaoming.wei@buaa.edu.cn

  • 中图分类号: TN95

Extracting UWB One-Dimensional Scattering Center Based on Improved Matrix Pencil

Funds: The National Natural Science Foundation of China (61671035), The Key Laboratory Foundation (6142502180103)
  • 摘要: 针对微动参数的高精度快速估计问题,该文提出一种基于几何绕射(GTD)模型和改进矩阵束的超宽带(UWB)散射中心提取算法,可实现散射中心径向距离、类型参数及散射强度的同时估计。该方法将超宽带条件下的目标GTD散射模型转化为状态空间方程,利用奇异值分解将汉克尔矩阵中的噪声分量去除,对降秩的汉克尔矩阵做广义特征值分解,利用单个脉冲内最强的若干散射点构造回波估计,进而获得径向距离的估计;在准确估计距离参数的条件下,对模型参数解耦,使得类型参数与其他参数分离,通过最小二乘算法和搜索算法获得类型参数的估计;最后基于最小二乘法估计出散射中心的散射强度。仿真结果表明,改进的矩阵束方法在低信噪比(SNR)下具有好的鲁棒性,可快速且高精度地提取目标微动距离、类型参数和散射强度等信息。
  • 图  1  改进矩阵束参数快速估计算法流程

    图  2  球头锥目标的切面及散射中心的位置图像

    图  3  状态空间平衡法对散射中心各参数的估计结果

    图  4  矩阵束法对散射中心各参数的估计结果

    图  5  改进的矩阵束法对散射中心各参数的估计结果

    图  6  3种参数估计方法的均方根误差

    表  1  类型参数代表的几何特征

    参数值散射中心的几何特征
    –4/2边缘上曲率不连续点
    –2/2锥尖
    –1/2弯曲边缘衍射
    0/2双曲面,平直的边缘
    +1/2单曲面(柱面)
    +2/2角反射器,平面
    下载: 导出CSV

    表  2  散射中心参数估计的仿真参数设置

    参数名称数值
    频率间隔$\Delta f$10 MHz
    频率点数201
    中心频率${f_{\text{c}}}$10 GHz
    信号采样间隔$\Delta t$0.001 s
    时间窗口19
    总体仿真时间1 s
    下载: 导出CSV

    表  3  加噪声情况下各算法的类型参数估计准确率及算法运行时间

    算法名称类型参数估计准确率(%)算法运行时间(s)
    状态空间平衡法28.6032.1984
    矩阵束法46.2034.3592
    改进的矩阵束法46.1417.1721
    下载: 导出CSV
  • [1] KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116–130. doi: 10.1364/JOSA.52.000116
    [2] WANG Jing, WANG Fei, and ZHOU Jianjiang. Radar target scattering center extraction based on the full-polarization GTD model[C]. 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 2009: 882–885.
    [3] HURST M and MITTRA R. Scattering center analysis via Prony’s method[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(8): 986–988. doi: 10.1109/TAP.1987.1144210
    [4] STEEDLY W M and MOSES R L. High resolution exponential modeling of fully polarized radar returns[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(3): 459–469. doi: 10.1109/7.81427
    [5] CARRIERE R and MOSES R L. High resolution radar target modeling using a modified Prony estimator[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(1): 13–18. doi: 10.1109/8.123348
    [6] 徐嘉华, 张小宽, 郑舒予, 等. 基于改进3D-ESPRIT算法的GTD模型参数估计与目标识别[J]. 系统工程与电子技术, 2021, 43(2): 336–342. doi: 10.12305/j.issn.1001-506X.2021.02.07

    XU Jiahua, ZHANG Xiaokuan, ZHENG Shuyu, et al. GTD model parameter estimation and target recognition based on improved 3D-ESPRIT algorithm[J]. Systems Engineering and Electronics, 2021, 43(2): 336–342. doi: 10.12305/j.issn.1001-506X.2021.02.07
    [7] DING Baiyuan and WEN Gongjian. A region matching approach based on 3-D scattering center model with application to SAR target recognition[J]. IEEE Sensors Journal, 2018, 18(11): 4623–4632. doi: 10.1109/JSEN.2018.2828307
    [8] LI Tingli and DU Lan. SAR automatic target recognition based on attribute scattering center model and discriminative dictionary learning[J]. IEEE Sensors Journal, 2019, 19(12): 4598–4611. doi: 10.1109/JSEN.2019.2901050
    [9] ZHOU Jianxiong, SHI Zhiguang, CHENG Xiao, et al. Automatic target recognition of SAR images based on global scattering center model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3713–3729. doi: 10.1109/TGRS.2011.2162526
    [10] 郑舒予, 张小宽, 郭艺夺, 等. 一维GTD散射中心模型参数估计的改进MUSIC算法[J]. 北京航空航天大学学报, 2020, 46(11): 2149–2155. doi: 10.13700/j.bh.1001-5965.2019.0576

    ZHENG Shuyu, ZHANG Xiaokuan, GUO Yiduo, et al. Parameter estimation of 1D GTD scattering center model based on an improved MUSIC algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2149–2155. doi: 10.13700/j.bh.1001-5965.2019.0576
    [11] ZHENG Shuyu, ZHANG Xiaokuan, ZONG Binfeng, et al. GTD model parameters estimation based on improved LS-ESPRIT algorithm[C]. 2019 Photonics & Electromagnetics Research Symposium, Xiamen, China, 2019: 2282–2289.
    [12] MITCHELL J and TJUATJA S. Separation of scattering phenomena in super-resolution ISAR imaging using constrained music[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1586–1589.
    [13] KUNG S Y, ARUN K S, and RAO D V B. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem[J]. Journal of the Optical Society of America, 1983, 73(12): 1799–1811. doi: 10.1364/JOSA.73.001799
    [14] NAISHADHAM K and PIOU J E. A robust state space model for the characterization of extended returns in radar target signatures[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(6): 1742–1751. doi: 10.1109/TAP.2008.916932
    [15] PIOU J E. A state identification method for 1-D measurements with gaps[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, USA, 2005: 1–9.
    [16] NAISHADHAM K and PIOU J E. State-space spectral estimation of characteristic electromagnetic responses in wideband data[J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4: 406–409. doi: 10.1109/LAWP.2005.859386
    [17] PIOU J E, CUOMO K M, and MAYHAN J T. A state-space technique for ultrawide-bandwidth coherent processing[R]. ESC-TR-98-066, 1999.
    [18] 闫华, 张磊, 陆金文, 等. 任意多次散射机理的GTD散射中心模型频率依赖因子表达[J]. 雷达学报, 2021, 10(3): 370–381. doi: 10.12000/JR21005

    YAN Hua, ZHANG Lei, LU Jinwen, et al. Frequency-dependent Factor Expression of the GTD scattering center model for the arbitrary multiple scattering mechanism[J]. Journal of Radars, 2021, 10(3): 370–381. doi: 10.12000/JR21005
    [19] WANG Jun, WEN Yaya, WEI Shaoming, et al. A state-space approach for shape reconstruction of scattering targets with step-frequency radar[C]. The 2012 5th International Congress on Image and Signal Processing, Chongqing, China, 2012: 1759–1763.
    [20] CHEN Xuan, TIAN Yuguang, DONG Chunzhu, et al. An improved state space approach based method for extracting the target scattering center[C]. 2017 International Applied Computational Electromagnetics Society Symposium, Suzhou, China, 2017: 1–3.
    [21] WEI Zhu, XIN He, JUN Hu, et al. Scattering centers extraction based on compressed sensing and multilevel fast multipole algorithm acceleration[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–2.
    [22] REN Lingyun, TRAN N, FOROUGHIAN F, et al. Short-time state-space method for micro-Doppler identification of walking subject using UWB impulse Doppler radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3521–3534. doi: 10.1109/TMTT.2018.2829523
    [23] 姜卫东. 光学区雷达目标结构成像的理论及其在雷达目标识别中的应用[D]. [博士论文], 中国人民解放军国防科学技术大学, 2000.

    JIANG Weidong. Theory of radar target structure imaging in optical region and its application in radar target recognition[D]. [Ph. D. dissertation], National University of Defense Technology, 2000.
    [24] 牛晓红. 基于矩阵束和Prony的多正弦信号参数估计算法研究[D]. [硕士论文], 哈尔滨工程大学, 2017.

    NIU Xiaohong. Research on parameter estimation algorithm of multi-sinusoidal signal based on matrix bundle and Prony[D]. [Master dissertation], Harbin Engineering University, 2017.
    [25] HUA Y and SARKAR T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(5): 814–824. doi: 10.1109/29.56027
    [26] CUOMO K M, PION J E, and MAYHAN J T. Ultrawide-band coherent processing[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(6): 1094–1107. doi: 10.1109/8.777137
    [27] HUA Y and SARKAR T K. Matrix pencil method and its performance[C]. International Conference on Acoustics, Speech, and Signal Processing, New York, USA, 1988: 2476–2479.
    [28] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716–723. doi: 10.1109/TAC.1974.1100705
    [29] WAX M and KAILATH T. Detection of signals by information theoretic criteria[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2): 387–392. doi: 10.1109/TASSP.1985.1164557
    [30] RISSANEN J. Modeling by shortest data description[J]. Automatica, 1978, 14(5): 465–471. doi: 10.1016/0005-1098(78)90005-5
    [31] WAX M and ZISKIND I. Detection of the number of coherent signals by the MDL principle[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(8): 1190–1196. doi: 10.1109/29.31267
    [32] HOLL JR D J. State-space approaches to ultra-wideband Doppler processing[D]. [Ph. D. dissertation], Worcester Polytechnic Institute, 2007.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  239
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2022-02-24
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-03-15
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回