高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀疏贝叶斯字典学习空时机动目标参数估计算法

章涛 张亚娟 孙刚 罗其俊

章涛, 张亚娟, 孙刚, 罗其俊. 稀疏贝叶斯字典学习空时机动目标参数估计算法[J]. 电子与信息学报, 2022, 44(8): 2884-2892. doi: 10.11999/JEIT210567
引用本文: 章涛, 张亚娟, 孙刚, 罗其俊. 稀疏贝叶斯字典学习空时机动目标参数估计算法[J]. 电子与信息学报, 2022, 44(8): 2884-2892. doi: 10.11999/JEIT210567
ZHANG Tao, ZHANG Yajuan, SUN Gang, LUO Qijun. Maneuvering Target Parameter Estimation Based on Sparse Bayesian Dictionary Learning in Space-Time Adaptive Processing[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2884-2892. doi: 10.11999/JEIT210567
Citation: ZHANG Tao, ZHANG Yajuan, SUN Gang, LUO Qijun. Maneuvering Target Parameter Estimation Based on Sparse Bayesian Dictionary Learning in Space-Time Adaptive Processing[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2884-2892. doi: 10.11999/JEIT210567

稀疏贝叶斯字典学习空时机动目标参数估计算法

doi: 10.11999/JEIT210567
基金项目: 天津市教委科研计划(2019KJ117)
详细信息
    作者简介:

    章涛:男,1980年生,博士,副教授,研究方向为机载雷达信号处理及其应用

    张亚娟:女,1997年生,硕士生,研究方向为稀疏恢复空时动目标参数估计

    孙刚:男,1997年生,硕士生,研究方向为稀疏恢复空时自适应处理

    罗其俊:男,1982年生,博士,讲师,研究方向为稀疏信号表示方法

    通讯作者:

    罗其俊 qjluo@cauc.edu.cn

  • 中图分类号: TN911

Maneuvering Target Parameter Estimation Based on Sparse Bayesian Dictionary Learning in Space-Time Adaptive Processing

Funds: The Scientific Research Plan of Tianjin Education Commission (2019KJ117)
  • 摘要: 针对基于稀疏恢复的空时自适应处理(STAP)目标参数估计方法中字典失配导致估计性能下降的问题,该文提出一种基于稀疏贝叶斯字典学习的高精度目标参数估计方法。该方法首先通过目标方位信息补偿多个阵元数据构建联合稀疏恢复数据,然后对补偿后的每个阵元数据利用双线性变换进行加速度和速度项分离。最后构建速度参数和加速度参数的泰勒级数动态字典,对机动目标参数进行高精度贝叶斯字典学习稀疏恢复。仿真实验证明,该方法能有效提高字典失配情况下目标参数估计精度,估计性能优于已有字典固定离散化的稀疏恢复空时目标参数估计方法。
  • 图  1  目标在参数空间中位置示意图

    图  2  相位补偿前后的空时采样示意图

    图  3  字典失配情况下的目标参数估计结果

    图  4  不同阵元数时目标速度估计均方误差随信噪比变化情况

    图  5  不同阵元数时目标加速度估计均方误差随信噪比变化情况

    图  6  不同字典间隔时目标速度估计均方误差随信噪比变化情况

    图  7  不同字典间隔时目标加速度估计均方误差随信噪比变化情况

  • [1] WANG Xiaoye, YANG Zhaocheng, HUANG Jianjun, et al. Robust two-stage reduced-dimension sparsity-aware STAP for airborne radar with coprime arrays[J]. IEEE Transactions on Signal Processing, 2019, 68: 81–96. doi: 10.1109/TSP.2019.2957640
    [2] 位寅生, 周希波, 刘佳俊. 稳健的基于参数化协方差矩阵估计的空时自适应处理方法[J]. 电子学报, 2019, 47(9): 1943–1950. doi: 10.3969/j.issn.0372-2112.2019.09.018

    WEI Yinsheng, ZHOU Xibo, and LIU Jiajun. Robust parametric covariance matrix estimation based STAP method[J]. Acta Electronica Sinica, 2019, 47(9): 1943–1950. doi: 10.3969/j.issn.0372-2112.2019.09.018
    [3] 刘维建, 谢文冲, 王永良. 部分均匀环境中存在干扰时机载雷达广义似然比检测[J]. 电子与信息学报, 2013, 35(8): 1820–1826. doi: 10.3724/SP.J.1146.2012.01492

    LIU Weijian, XIE Wenchong, and WANG Yongliang. Generalized likelihood ratio test for airborne radar with jamming in partially homogeneous environments[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1820–1826. doi: 10.3724/SP.J.1146.2012.01492
    [4] MONTLOUIS W, FAUCONIER R, and NDOYE M. Rapidly moving target parameter estimation using phased array radars[C]. The 43rd International Conference on Telecommunications and Signal Processing, Milan, Italy, 2020: 523–527.
    [5] ZHANG Xiaowen, LIAO Guisheng, YANG Zhiwei, et al. Parameter estimation based on Hough transform for airborne radar with conformal array[J]. Digital Signal Processing, 2020, 107: 102869. doi: 10.1016/j.dsp.2020.102869
    [6] 周宝亮. 分布式相参雷达LFM宽带去斜参数估计方法[J]. 电子与信息学报, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398

    ZHOU Baoliang. Distributed coherent radar LFM wideband stretch parameter estimation method[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1566–1572. doi: 10.11999/JEIT190398
    [7] KUMAR K A, ARVIND M, DIVAKAR K, et al. A novel time-frequency approach for acceleration estimation from a single PRI[C]. The Fifth International Symposium on Signal Processing and its Applications, Brisbane, Australia, 1999: 531–534.
    [8] XIA Xianggen. Discrete chirp-Fourier transform and its application to chirp rate estimation[J]. IEEE Transactions on Signal Processing, 2000, 48(11): 3122–3133. doi: 10.1109/78.875469
    [9] 王鹏, 邱天爽, 李景春, 等. 基于高斯加权分数阶傅里叶变换的LFM信号参数估计[J]. 通信学报, 2016, 37(4): 107–115. doi: 10.11959/j.issn.1000-436x.2016077

    WANG Peng, QIU Tianshuang, LI Jingchun, et al. Parameters estimation of LFM signal based on Gaussian-weighted fractional Fourier transform[J]. Journal on Communications, 2016, 37(4): 107–115. doi: 10.11959/j.issn.1000-436x.2016077
    [10] 贾舒宜, 王国宏, 张磊. 基于压缩感知的机动目标径向加速度估计[J]. 系统工程与电子技术, 2013, 35(9): 1815–1820. doi: 10.3969/j.issn.1001-506X.2013.09.02

    JIA Shuyi, WANG Guohong, and ZHANG Lei. Radial acceleration estimation of maneuvering target based on compressive sensing[J]. Systems Engineering and Electronics, 2013, 35(9): 1815–1820. doi: 10.3969/j.issn.1001-506X.2013.09.02
    [11] 贾琼琼, 吴仁彪. 基于压缩感知的空时自适应动目标参数估计[J]. 电子与信息学报, 2013, 35(11): 2714–2720. doi: 10.3724/SP.J.1146.2013.00045

    JIA Qiongqiong and WU Renbiao. Space time adaptive parameter estimation of moving target based on compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(11): 2714–2720. doi: 10.3724/SP.J.1146.2013.00045
    [12] 李海, 郑景忠, 周盟, 等. 基于压缩感知和三次相位变换的低复杂度空中机动目标参数估计[J]. 电子与信息学报, 2015, 37(11): 2697–2704. doi: 10.11999/JEIT150170

    LI Hai, ZHENG Jingzhong, ZHOU Meng, et al. Parameters estimation of air maneuvering target based on compressive sensing and cubic phase transform[J]. Journal of Electronics &Information Technology, 2015, 37(11): 2697–2704. doi: 10.11999/JEIT150170
    [13] CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    [14] ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi: 10.1016/j.sigpro.2009.11.009
    [15] CHI Yuejie, SCHARF L L, PEZESHKI A, et al. Sensitivity to basis mismatch in compressed sensing[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2182–2195. doi: 10.1109/TSP.2011.2112650
    [16] 章涛, 钟伦珑, 来燃, 等. 基于稀疏贝叶斯学习的字典失配杂波空时谱估计方法[J]. 航空学报, 2021, 42(6): 324592. doi: 10.7527/S1000-6893.2020.24592

    ZHANG Tao, ZHONG Lunlong, LAI Ran, et al. Sparse Bayesian learning method for eliminating dictionary mismatch in clutter space-time spectrum estimation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 324592. doi: 10.7527/S1000-6893.2020.24592
    [17] ZHU Hao, LEUS G, and GIANNAKIS G B. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002–2016. doi: 10.1109/TSP.2011.2109956
    [18] ZHENG Jimeng and KAVEH M. Directions-of-arrival estimation using a sparse spatial spectrum model with uncertainty[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 2848–2851.
    [19] YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378
    [20] KLEMM R. Cramer-Rao analysis of reduced order STAP processors[C]. The IEEE 2000 International Radar Conference, Alexandria, USA, 2000: 584–589.
  • 加载中
图(7)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  201
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2022-04-20
  • 网络出版日期:  2022-04-26
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回