高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超大幅宽的高轨SAR加速BP成像方法

陈权 刘文康 孙光才 李东旭 邢孟道

陈权, 刘文康, 孙光才, 李东旭, 邢孟道. 基于超大幅宽的高轨SAR加速BP成像方法[J]. 电子与信息学报, 2022, 44(9): 3136-3143. doi: 10.11999/JEIT210560
引用本文: 陈权, 刘文康, 孙光才, 李东旭, 邢孟道. 基于超大幅宽的高轨SAR加速BP成像方法[J]. 电子与信息学报, 2022, 44(9): 3136-3143. doi: 10.11999/JEIT210560
CHEN Quan, LIU Wenkang, SUN Guangcai, LI Dongxu, XING Mengdao. An Accelerated Back-Projection Algorithm Based on Large Swath for Geosynchronous-Earch-Orbit SAR Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3136-3143. doi: 10.11999/JEIT210560
Citation: CHEN Quan, LIU Wenkang, SUN Guangcai, LI Dongxu, XING Mengdao. An Accelerated Back-Projection Algorithm Based on Large Swath for Geosynchronous-Earch-Orbit SAR Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3136-3143. doi: 10.11999/JEIT210560

基于超大幅宽的高轨SAR加速BP成像方法

doi: 10.11999/JEIT210560
基金项目: 国家自然科学基金重点项目(61931025),国家自然科学基金重点项目(2017-JCJQ-ZQ-061),高等学校学科创新引智计划(B18039)
详细信息
    作者简介:

    陈权:男,博士,研究方向为星载合成孔径雷达成像

    刘文康:男,副教授,研究方向为合成孔径雷达成像

    孙光才:男,教授,研究方向为新体制雷达成像、运动目标检测成像

    李东旭:男,硕士,研究方向为合成孔径雷达成像及体制设计

    邢孟道:男,教授,研究方向为雷达探测、雷达成像、运动目标检测成像

    通讯作者:

    刘文康 wkliu@xidian.edu.com

  • 中图分类号: TN95

An Accelerated Back-Projection Algorithm Based on Large Swath for Geosynchronous-Earch-Orbit SAR Imaging

Funds: The State Key Program of National Natural Science China (61931025), The State Key Program of National Natural Science China (2017-JCJQ-ZQ-061), The 111 Project (B18039)
  • 摘要: 在高轨(GEO)合成孔径雷达(SAR)成像中,超大的成像幅宽导致成像区域不满足平面近似,使得基于平面网格的快速BP算法失效。该文提出一种基于地表网格的快速BP算法来精确高效地处理高轨SAR信号。首先针对轨道弯曲和地表弯曲所带来的信号复杂空变问题,采用一种基于实际地表的曲面网格布置方法。针对子孔径BP图像的频谱混叠问题,提出基于曲面网格的两步频谱压缩函数,将子孔径图像在合成之前实现频谱解混叠。同时采用多级子孔径图像合成的方法提高成像效率。最后,通过对比仿真,证明了该文所提算法的精确性以及高效性。
  • 图  1  地表弯曲造成的2次相位误差分析结果

    图  2  本文算法流程框图

    图  3  本文算法和对比算法的计算量分析

    图  4  仿真点目标布置示意图

    图  5  GCBP算法成像结果

    图  6  本文算法成像结果

    表  1  仿真参数

    类型名称
    轨道参数轨道高度(km)35786
    偏心率0
    倾角(°)16
    近地点幅角(°)0
    雷达参数载频(GHz)1.25
    带宽(MHz)13
    PRF (Hz)150
    斜视角(°)0
    合成孔径时间(s)450
    地面距离/多普勒分辨率(m)20/20
    场景参数距离子场景宽度(km)20
    场景宽度(距离/方位)(km)400/400
    下载: 导出CSV

    表  2  本文算法和对比算法成像质量评估

    点目标PSLR(dB)ISLR(dB)分辨率(m)展宽比(方位)
    距离向方位向距离向方位向距离向方位向距离向方位向
    本文方法A–13.24–13.27–10.02–10.0520.1320.061.0111.012
    B–13.31–13.28–10.02–10.0020.0520.051.0031.002
    C–13.30–13.23–10.05–10.0420.1120.071.0121.014
    对比方法A–13.26–0.35–10.02–2.1321.03
    B–13.27–13.29–10.01–9.7321.1020.051.0041.002
    C–13.25–0.23–10.13–2.7521.07
    下载: 导出CSV
  • [1] MADSEN S N, CHEN C, and EDELSTEIN W. Radar options for global earthquake monitoring[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1483–1485.
    [2] TOMIYASU K. Conceptual performance of a satellite borne, wide swath synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, GE-19(2): 108–116. doi: 10.1109/TGRS.1981.350361
    [3] TOMIYASU K. Synthetic aperture radar in geosynchronous orbit[C]. 1978 Antennas and Propagation Society International Symposium, Washington, USA, 1978: 42–45.
    [4] BRUNO D, HOBBS S E, and OTTAVIANELLI G. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications[J]. Acta Astronautica, 2006, 59(1-5): 149–156. doi: 10.1016/j.actaastro.2006.02.005
    [5] 刘文康, 景国彬, 孙光才, 等. 基于两步方位重采样的中轨SAR聚焦方法[J]. 电子与信息学报, 2019, 41(1): 136–142.

    LIU Wenkang, JING Guobin, SUN Guangcai, et al. Medium-earth-orbit SAR data focusing method based on two-step azimuth resampling[J]. Journal of Electronics &Information Technology, 2019, 41(1): 136–142.
    [6] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in range-Doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/LGRS.2016.2599224
    [7] 陈权, 孙光才, 刘文康, 等. 基于时频联合尺度变换的中轨SAR斜视成像方法[J]. 系统工程与电子技术, 2020, 42(2): 309–314. doi: 10.3969/j.issn.1001-506X.2020.02.08

    CHEN Quan, SUN Guangcai, LIU Wenkang, et al. Highly-squinted MEO SAR focusing based on joint time and Doppler scaling[J]. Systems Engineering and Electronic, 2020, 42(2): 309–314. doi: 10.3969/j.issn.1001-506X.2020.02.08
    [8] GUARNIERI A M, LEANZA A, RECCHIA A, et al. Atmospheric phase screen in GEO-SAR: Estimation and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1668–1679. doi: 10.1109/TGRS.2017.2766084
    [9] LIU Wenkang, SUN Guangcai, XING Mengdao, et al. Focusing of MEO SAR data based on principle of optimal imaging coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5477–5489. doi: 10.1109/TGRS.2020.2966581
    [10] 陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205–220. doi: 10.12000/JR20015

    CHEN Jie, YANG Wei, WANG Pengbo, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205–220. doi: 10.12000/JR20015
    [11] 李航, 刘文康, 孙光才, 等. 基于成像坐标系优化的中轨星载SAR成像方法[J]. 雷达学报, 2020, 9(5): 856–864. doi: 10.12000/JR20098

    LI Hang, LIU Wenkang, SUN Guangcai, et al. Medium orbit spaceborne SAR imaging method based on Optimization of imaging coordinate system[J]. Journal of Radars, 2020, 9(5): 856–864. doi: 10.12000/JR20098
    [12] SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [13] LI Zhuo, LI Chunsheng, YU Ze, et al. Back projection algorithm for high resolution GEO-SAR image formation[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 336–339.
    [14] ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
    [15] BIE Bowen, XING Mengdao, SUN Guangcai, et al. A frequency domain backprojection algorithm based on local Cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7086–7101. doi: 10.1109/TGRS.2018.2848249
    [16] CHEN Juan, XIONG Jintao, HUANG Yulin, et al. Research on a novel fast backprojection algorithm for stripmap bistatic SAR imaging[C]. The 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 622–625.
    [17] DONG Qi, SUN Guangcai, YANG Zemin, et al. Cartesian factorized backprojection algorithm for high-resolution spotlight SAR imaging[J]. IEEE Sensors Journal, 2018, 18(3): 1160–1168. doi: 10.1109/JSEN.2017.2780164
    [18] CHEN Xiaoxiang, SUN Guangcai, XING Mengdao, et al. Ground Cartesian back-projection algorithm for high squint diving TOPS SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5812–5827. doi: 10.1109/TGRS.2020.3011589
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  66
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2022-07-13
  • 网络出版日期:  2022-07-21
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回