高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成孔径无源定位性能分析与参数设计

王裕旗 孙光才 邢孟道 张子敬

王裕旗, 孙光才, 邢孟道, 张子敬. 合成孔径无源定位性能分析与参数设计[J]. 电子与信息学报, 2022, 44(9): 3155-3162. doi: 10.11999/JEIT210524
引用本文: 王裕旗, 孙光才, 邢孟道, 张子敬. 合成孔径无源定位性能分析与参数设计[J]. 电子与信息学报, 2022, 44(9): 3155-3162. doi: 10.11999/JEIT210524
WANG Yuqi, SUN Guangcai, XING Mengdao, ZHANG Zijing. Performance Analysis and Parameter Design of Synthetic Aperture Passive Positioning[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3155-3162. doi: 10.11999/JEIT210524
Citation: WANG Yuqi, SUN Guangcai, XING Mengdao, ZHANG Zijing. Performance Analysis and Parameter Design of Synthetic Aperture Passive Positioning[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3155-3162. doi: 10.11999/JEIT210524

合成孔径无源定位性能分析与参数设计

doi: 10.11999/JEIT210524
基金项目: 国家杰出青年科学基金(61825105)
详细信息
    作者简介:

    王裕旗:男,博士生,研究方向为合成孔径无源定位

    孙光才:男,博士,教授,研究方向为合成孔径雷达成像和无源定位

    邢孟道:男,博士,教授,研究方向为雷达成像和目标检测与识别

    张子敬:男,博士,教授,研究方向为雷达目标检测、雷达极化信息处理

    通讯作者:

    孙光才 rsandsgc@126.com

  • 中图分类号: TN958

Performance Analysis and Parameter Design of Synthetic Aperture Passive Positioning

Funds: The National Science Fund for Distinguished Young Scholars (61825105)
  • 摘要: 合成孔径无源定位中,为获得高的2维分辨率,需要长的合成孔径,但斜距历程的多项式近似会带来距离定位的误差。针对此问题,该文分析了合成孔径定位中距离误差的影响因素,给出了定位误差的近似表达式,同时分析了距离和方位分辨率的影响因素,给出了分辨率的分析方法。在此基础上,综合考虑定位精度和分辨率的约束条件,给出了合成孔径长度参数的优化方法。仿真结果验证了方法的有效性。
  • 图  1  聚焦位置偏差

    图  2  误差的理论分析结果

    图  3  定位误差随距离变化情况图

    图  4  定位误差随波束宽度变化情况

    图  5  定位误差近似分析结果图

    图  6  距离分辨率分析结果

    图  7  方位分辨率分析结果

    图  8  合成孔径长度上限随距离变化图

    图  9  合成孔径长度下限随距离变化

    图  10  合成孔径长度优选曲线

    表  1  不同距离的波束宽度限制

    距离(km)波束宽度(°)
    204.55
    403.83
    603.46
    803.22
    下载: 导出CSV
  • [1] 张辉, 陈赞. 固定辐射源目标单机无源定位方法[J]. 通信技术, 2021, 54(3): 575–579. doi: 10.3969/j.issn.1002-0802.2021.03.008

    ZHANG Hui and CHEN Zan. Algorithm of passive location of airborne for communication station[J]. Communications Technology, 2021, 54(3): 575–579. doi: 10.3969/j.issn.1002-0802.2021.03.008
    [2] 吕日毅, 李超, 张阳. 单机无源定位飞行方法仿真研究[J]. 弹箭与制导学报, 2020, 40(6): 82–85. doi: 10.15892/j.cnki.djzdxb.2020.06.019

    LYU Riyi, LI Chao, and ZHANG Yang. Research on flight method simulation of single aircraft passive positioning[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2020, 40(6): 82–85. doi: 10.15892/j.cnki.djzdxb.2020.06.019
    [3] 罗景青, 马贤同, 吴世龙. 目标的位置信息场定位技术[J]. 电光与控制, 2015, 22(4): 1–7. doi: 10.3969/j.issn.1671-637X.2015.04.001

    LUO Jingqing, MA Xiantong, and WU Shilong. Technology of target position information field locating[J]. Electronics Optics &Control, 2015, 22(4): 1–7. doi: 10.3969/j.issn.1671-637X.2015.04.001
    [4] 吴癸周, 郭福成, 张敏. 信号直接定位技术综述[J]. 雷达学报, 2020, 9(6): 998–1013. doi: 10.12000/JR20040

    WU Guizhou, GUO Fucheng, and ZHANG Min. Direct position determination: An overview[J]. Journal of Radars, 2020, 9(6): 998–1013. doi: 10.12000/JR20040
    [5] 许志伟, 王运锋, 张小琴. 基于只测向的机载单站定位技术[J]. 四川大学学报:自然科学版, 2017, 54(2): 293–297.

    XU Zhiwei, WANG Yunfeng, and ZHANG Xiaoqin. Airborne single-station passive location technology only based on bearing method[J]. Journal of Sichuan University:Natural Science Edition, 2017, 54(2): 293–297.
    [6] 莫成坤, 陈树新, 吴昊, 等. 基于角度信息的递推最小二乘无源定位算法[J]. 计算机测量与控制, 2014, 22(9): 2863–2866. doi: 10.16526/j.cnki.11-4762/tp.2014.09.050

    MO Chengkun, CHEN Shuxin, WU Hao, et al. Recursion least-squares passive location algorithm based on angle information[J]. Computer Measurement &Control, 2014, 22(9): 2863–2866. doi: 10.16526/j.cnki.11-4762/tp.2014.09.050
    [7] 陆安南, 杨小牛. 最小相位误差单星无源定位法[J]. 上海航天, 2007, 24(3): 6–9. doi: 10.19392/j.cnki.1671-7341.2014.07.055

    LU Annan and YANG Xiaoniu. Passive location with minimizing phase difference error by single satellite[J]. Aerospace Shanghai, 2007, 24(3): 6–9. doi: 10.19392/j.cnki.1671-7341.2014.07.055
    [8] 游屈波, 吴耀云, 胡飞, 等. 基于机载单站双航段联合估计的纯方位定位跟踪算法[J]. 电子信息对抗技术, 2019, 34(5): 28–31. doi: 10.3969/j.issn.1674-2230.2019.05.007

    YOU Qubo, WU Yaoyun, HU Fei, et al. Bearing-only target location and tracking algorithm based on joint estimation with two flight segments of single observer[J]. Electronic Information Warfare Technology, 2019, 34(5): 28–31. doi: 10.3969/j.issn.1674-2230.2019.05.007
    [9] 李腾, 郭福成, 姜文利. 星载干涉仪无源定位新方法及其误差分析[J]. 国防科技大学学报, 2012, 34(3): 164–170. doi: 10.3969/j.issn.1001-2486.2012.03.032

    LI Teng, GUO Fucheng, and JIANG Wenli. A novel method for satellite-borne passive localization using interferometer and its error analysis[J]. Journal of National University of Defense Technology, 2012, 34(3): 164–170. doi: 10.3969/j.issn.1001-2486.2012.03.032
    [10] 张敏, 冯道旺, 郭福成. 基于多普勒变化率的单星无源定位[J]. 航天电子对抗, 2009, 25(5): 11–13,64. doi: 10.3969/j.issn.1673-2421.2009.05.004

    ZHANG Min, FENG Daowang, and GUO Fucheng. Passive localization by a single satellite based on Doppler rate-of-change[J]. Aerospace Electronic Warfare, 2009, 25(5): 11–13,64. doi: 10.3969/j.issn.1673-2421.2009.05.004
    [11] 李华, 郭福成. 等高程运动假设的单星角度融合多普勒变化率跟踪方法[J]. 空间电子技术, 2018, 15(4): 41–48. doi: 10.3969/j.issn.1674-7135.2018.04.009

    LI Hua and GUO Fucheng. A fusion of angle and Doppler rate-of-changing based tracking method forconstant altitude moving target by single satellite[J]. Space Electronic Technology, 2018, 15(4): 41–48. doi: 10.3969/j.issn.1674-7135.2018.04.009
    [12] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513–516. doi: 10.1109/LSP.2004.826501
    [13] BAR-SHALOM O and WEISS A J. Direct emitter geolocation under local scattering[J]. Signal Processing, 2015, 117: 102–114. doi: 10.1016/j.sigpro.2015.05.003
    [14] REUVEN A M and WEISS A J. Direct position determination of cyclostationary signals[J]. Signal Processing, 2009, 89(12): 2448–2464. doi: 10.1016/j.sigpro.2009.04.009
    [15] BAR-SHALOM O and WEISS A J. Efficient direct position determination of orthogonal frequency division multiplexing signals[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 101–111. doi: 10.1049/iet-rsn:20080097
    [16] WU Guizhou, ZHANG Min, and GUO Fucheng. Self-calibration direct position determination using a single moving array with sensor gain and phase errors[J]. Signal Processing, 2020, 173: 107587. doi: 10.1016/j.sigpro.2020.107587
    [17] 张敏, 郭福成, 周一宇. 基于单个长基线干涉仪的运动单站直接定位[J]. 航空学报, 2013, 34(2): 378–386. doi: 10.7524/S1000-6893.2013.0043

    ZHANG Min, GUO Fucheng, and ZHOU Yiyu. A single moving observer direct position determination method using a long baseline interferometer[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 378–386. doi: 10.7524/S1000-6893.2013.0043
    [18] TZAFRI L and WEISS A J. Application of Capon method to direct position determination[J]. ICT Express, 2016, 2(1): 5–9. doi: 10.1016/j.icte.2016.02.010
    [19] GARCIA N, WYMEERSCH H, LARSSON E G, et al. Direct localization for massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2475–2487. doi: 10.1109/TSP.2017.2666779
    [20] TIRER T and WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2): 192–196. doi: 10.1109/LSP.2015.2503921
    [21] TZAFRI L and WEISS A J. High-resolution direct position determination using MVDR[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6449–6461. doi: 10.1109/TWC.2016.2585116
    [22] TIRER T and WEISS A J. Performance analysis of a high-resolution direct position determination method[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 544–554. doi: 10.1109/TSP.2016.2621729
    [23] LI Jinzhou, YANG Le, GUO Fucheng, et al. Coherent summation of multiple short-time signals for direct positioning of a wideband source based on delay and Doppler[J]. Digital Signal Processing, 2016, 48: 58–70. doi: 10.1016/j.dsp.2015.09.008
    [24] WEISS A J. Direct geolocation of wideband emitters based on delay and Doppler[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2513–2521. doi: 10.1109/TSP.2011.2128311
    [25] PICARD J S and WEISS A J. Direct position determination sensitivity to NLOS propagation effects on Doppler-shift[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3870–3881. doi: 10.1109/TSP.2019.2923152
    [26] XIA Wei and LIU Wei. Distributed adaptive direct position determination of emitters in sensor networks[J]. Signal Processing, 2016, 123: 100–111. doi: 10.1016/j.sigpro.2016.01.002
    [27] BAR-SHALOM O and WEISS A J. Emitter geolocation using single moving receiver[J]. Signal Processing, 2014, 105: 70–83. doi: 10.1016/j.sigpro.2014.05.006
    [28] TIRER T and WEISS A J. High resolution localization of narrowband radio emitters based on Doppler frequency shifts[J]. Signal Processing, 2017, 141: 288–298. doi: 10.1016/j.sigpro.2017.06.019
    [29] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology [M]. Beijing, China: Publishing House of Electronics Industry, 2005.
    [30] LIU Baochang, WANG Tong, and BAO Zheng. Slant-range velocity estimation based on small-FM-rate chirp[J]. Signal Processing, 2008, 88(10): 2472–2482. doi: 10.1016/j.sigpro.2008.04.013
    [31] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Beam steering SAR data processing by a generalized PFA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4366–4377. doi: 10.1109/TGRS.2012.2237407
    [32] SUN Guangcai, XING Mengdao, XIA Xianggen, et al. A unified focusing algorithm for several modes of SAR based on FrFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3139–3155. doi: 10.1109/TGRS.2012.2212280
    [33] 王裕旗, 孙光才, 杨军, 等. 基于长合成孔径的辐射源成像定位算法[J]. 雷达学报, 2020, 9(1): 185–194. doi: 10.12000/JR19080

    WANG Yuqi, SUN Guangcai, YANG Jun, et al. Passive localization algorithm for radiation source based on long synthetic aperture[J]. Journal of Radars, 2020, 9(1): 185–194. doi: 10.12000/JR19080
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  233
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2022-07-27
  • 网络出版日期:  2022-08-21
  • 刊出日期:  2022-09-19

目录

    /

    返回文章
    返回