高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增强现实场景下基于稳态视觉诱发电位的机械臂控制系统

陈玲玲 陈鹏飞 谢良 许敏鹏 徐登科 闫慧炯 罗治国 闫野 印二威

关键, 李宝, 刘加能, 张建. 两种海杂波背景下的微弱匀加速运动目标检测方法[J]. 电子与信息学报, 2009, 31(8): 1898-1902. doi: 10.3724/SP.J.1146.2008.01023
引用本文: 陈玲玲, 陈鹏飞, 谢良, 许敏鹏, 徐登科, 闫慧炯, 罗治国, 闫野, 印二威. 增强现实场景下基于稳态视觉诱发电位的机械臂控制系统[J]. 电子与信息学报, 2022, 44(2): 496-506. doi: 10.11999/JEIT210465
Guan Jian, Li Bao, Liu Jia-neng, Zhang Jian. Two Approaches of Detecting Weak Moving Target with Constant Acceleration in Sea Clutter[J]. Journal of Electronics & Information Technology, 2009, 31(8): 1898-1902. doi: 10.3724/SP.J.1146.2008.01023
Citation: CHEN Lingling, CHEN Pengfei, XIE Liang, XU Minpeng, XU Dengke, YAN Huijiong, LUO Zhiguo, YAN Ye, YIN Erwei. Control System of Robotic Arm Based on Steady-State Visual Evoked Potentials in Augmented Reality Scenarios[J]. Journal of Electronics & Information Technology, 2022, 44(2): 496-506. doi: 10.11999/JEIT210465

增强现实场景下基于稳态视觉诱发电位的机械臂控制系统

doi: 10.11999/JEIT210465
基金项目: 国家自然科学基金(61901505, 61703407, 62076250),河北省自然科学基金(F2021202021),国家创新平台开放基金(2019YJ192)
详细信息
    作者简介:

    陈玲玲:女,1981年生,教授,研究方向为康复机器人控制、模式识别

    陈鹏飞:男,1997年生,硕士生,研究方向为脑机接口、人机交互

    谢良:男,1990年生,助理研究员,研究方向为机器视觉、人机交互

    许敏鹏:男,1988年生,副教授,研究方向为脑机接口

    徐登科:男,1980年生,副研究员,研究方向为计算机

    闫慧炯:男,1982年生,中级工程师,研究方向为人因工程、工业设计

    罗治国:男,1989年生,助理研究员,研究方向为交互认知

    闫野:男,1971年生,研究员,研究方向为人机交互、无人系统

    印二威:男,1985年生,副研究员,研究方向为脑机接口、智能人机交互

    通讯作者:

    谢良 xielnudt@gmail.com

  • 中图分类号: TP242.6; R318

Control System of Robotic Arm Based on Steady-State Visual Evoked Potentials in Augmented Reality Scenarios

Funds: The National Natural Science Foundation of China (61901505, 61703407, 62076250), The Natural Science Foundation of Hebei Province (F2021202021), The National Innovation Platform Open Fund (2019YJ192)
  • 摘要: 目前脑控机械臂在医疗康复等多个领域展现出了宽广的应用前景,但也存在灵活性较差、使用者易疲劳等不足之处。针对上述不足,该文设计一套增强现实(AR)环境下基于稳态视觉诱发电位(SSVEP)的机械臂异步控制系统。利用滤波器组典型相关分析方法(FBCCA)实现对12个目标的识别;提出基于投票策略和差值预测的动态窗口,实现刺激时长的自适应调节;利用伪密钥实现机械臂异步控制,完成拼图任务。试验结果表明,动态窗口可以根据受试者状态自动调整刺激时长,离线平均准确度为(93.11±5.85)%,平均信息传输速率(ITR)为(59.69±8.11) bit·min–1。在线单次命令平均选择时间为2.18 s,有效地减轻受试者的视觉疲劳。每位受试者均能迅速完成拼图任务,证明了该人机交互方法的可行性。
  • 图  1  系统整体结构图

    图  2  视觉刺激界面

    图  3  SSVEP-BCI中用于目标识别的FBCCA算法流程图

    图  4  基于投票策略和差值预测的动态窗口

    图  5  12个指令预测字符与真实字符的混淆矩阵

    图  6  在线实验场景,受试者控制机械臂完成拼图任务

    图  7  执行准确与失误的场景图

    表  1  离线试验1的结果

    受试者分类准确率 (%)ITR(bit·min–1)
    S199.4470.31
    S2*94.1761.25
    S390.8356.55
    S4*86.6751.14
    S5*93.3360.02
    S6100.0071.70
    S791.6757.66
    S8*76.3940.22
    S9*98.3371.70
    S1090.0055.40
    Mean±SD92.08±7.0259.59±9.90
    (*:初次参加BCI试验的受试者;Mean:平均值;SD:标准偏差)
    下载: 导出CSV

    表  2  离线试验2的结果

    受试者分类准确率(%)ITR(bit·min–1)
    S199.4452.74
    S2*95.0046.88
    S397.5049.95
    S4*92.5044.12
    S5*95.8347.86
    S6100.0053.77
    S796.2148.32
    S8*86.8138.49
    S9*99.1771.70
    S1091.6743.24
    Mean±SD95.41±4.1347.87±4.92
    下载: 导出CSV

    表  3  离线试验3的结果

    受试者分类准确率(%)ITR(bit·min–1)刺激时间(s)
    S199.4470.242.01
    S2*94.1761.082.01
    S392.5058.242.03
    S4*88.3353.052.01
    S5*94.1761.042.01
    S6100.0067.152.01
    S791.6757.212.02
    S8*80.8343.382.07
    S9*99.1769.282.02
    S1090.8356.242.02
    Mean±SD93.11±5.8559.69±8.112.02±0.02
    下载: 导出CSV

    表  4  选择控制指令试验结果

    受试者窗口类型完成时间(s)命令选择时间(s)总命令数目错误命令数目识别准确率(%)最终执行错误数目
    S1固定745336488.891
    动态6892.1735391.431
    S2*固定725335391.430
    动态6732.1934294.120
    S3固定721335391.430
    动态6852.2136488.891
    S4*固定730336488.891
    动态6742.1635391.430
    S5*固定70733201000
    动态6692.1633196.970
    S6固定712334294.121
    动态6772.1735391.430
    S7固定726336488.890
    动态6892.1835391.430
    S8*固定735334294.120
    动态6802.2035391.430
    S9*固定731335391.431
    动态7022.1837586.492
    S10固定722333196.670
    动态6792.1734291.420
    Mean固定725.4334.62.692.590.4
    动态681.72.1834.92.991.500.4
    下载: 导出CSV

    表  5  选择控制指令试验结果

    受试者窗口类型总命令数目错误命令数目识别准确率(%)
    S1固定43295.35
    动态41197.56
    S2*固定44393.18
    动态42392.86
    S3固定39294.87
    动态38294.74
    S4*固定400100
    动态44197.73
    S5*固定390100
    动态37197.30
    S6固定42197.62
    动态45295.56
    S7固定36391.67
    动态37294.60
    S8*固定41295.12
    动态400100
    S9*固定45491.11
    动态43393.02
    S10固定41295.12
    动态38197.37
    Mean固定41.01.995.40
    动态40.51.696.07
    下载: 导出CSV
  • [1] BAJAJ N M, SPIERS A J, and DOLLAR A M. State of the art in artificial wrists: A review of prosthetic and robotic wrist design[J]. IEEE Transactions on Robotics, 2019, 35(1): 261–277. doi: 10.1109/TRO.2018.2865890
    [2] SOBREPERA M J, LEE V G, GARG S, et al. Perceived usefulness of a social robot augmented telehealth platform by therapists in the United States[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2946–2953. doi: 10.1109/LRA.2021.3062349
    [3] LINDENROTH L, BANO S, STILLI A, et al. A fluidic soft robot for needle guidance and motion compensation in intratympanic steroid injections[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 871–878. doi: 10.1109/LRA.2021.3051568
    [4] CÉSPEDES N, MÚNERA M, GÓMEZ C, et al. Social human-robot interaction for gait rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(6): 1299–1307. doi: 10.1109/TNSRE.2020.2987428
    [5] XIE Shenglong, HU Kaiming, LIU Haitao, et al. Dynamic modeling and performance analysis of a new redundant parallel rehabilitation robot[J]. IEEE Access, 2020, 8: 222211–222225. doi: 10.1109/ACCESS.2020.3043429
    [6] CIO Y S L K, RAISON M, MÉNARD C L, et al. Proof of concept of an assistive robotic arm control using artificial stereovision and eye-tracking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(12): 2344–2352. doi: 10.1109/TNSRE.2019.2950619
    [7] ZHANG Xiangzi, GUO Yaqiu, GAO Boyu, et al. Alpha frequency intervention by electrical stimulation to improve performance in Mu-Based BCI[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(6): 1262–1270. doi: 10.1109/TNSRE.2020.2987529
    [8] XU Minpeng, HAN Jin, WANG Yijun, et al. Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(11): 3073–3082. doi: 10.1109/TBME.2020.2975614
    [9] SARASA G, GRANADOS A, and RODRÍGUEZ F B. Algorithmic clustering based on string compression to extract P300 structure in EEG signals[J]. Computer Methods and Programs in Biomedicine, 2019, 176: 225–235. doi: 10.1016/j.cmpb.2019.03.009
    [10] OBEIDAT Q T, CAMPBELL T A, and KONG J. Spelling with a small mobile brain-computer interface in a moving wheelchair[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 2169–2179. doi: 10.1109/TNSRE.2017.2700025
    [11] HOSNI S M, BORGHEAI S B, J MCLINDEN, et al. An fNIRS-based motor imagery BCI for ALS: A subject-specific data-driven approach[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 3063–3073. doi: 10.1109/TNSRE.2020.3038717
    [12] DOWNEY J E, WEISS J M, MUELLING K, et al. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping[J]. Journal of Neuroengineering and Rehabilitation, 2016, 13(1): 28. doi: 10.1186/s12984-016-0134-9
    [13] CHEN Xiaogang, ZHAO Bing, WANG Yijun, et al. Control of a 7-DOF robotic arm system with an SSVEP-based BCI[J]. International Journal of Neural Systems, 2018, 28(8): 1850018. doi: 10.1142/S0129065718500181
    [14] 陈超, 平尧, 郝斌, 等. 基于脑机接口技术的写字系统建模仿真与实现[J]. 系统仿真学报, 2018, 30(12): 4499–4505. doi: 10.16182/j.issn1004731x.joss.201812001

    CHEN Chao, PING Yao, HAO Bin, et al. Modeling, simulation and realization of writing system based on BCI technology[J]. Journal of System Simulation, 2018, 30(12): 4499–4505. doi: 10.16182/j.issn1004731x.joss.201812001
    [15] 徐阳. 脑机接口与机器视觉结合的机械臂共享控制研究[D]. [硕士论文], 上海交通大学, 2019. doi: 10.27307/d.cnki.gsjtu.2019.001896.

    XU Yang. Shared control of a robotic ARM using non-invasive brain-computer interface and machine vision[D]. [Master dissertation], Shanghai Jiao Tong University, 2019. doi: 10.27307/d.cnki.gsjtu.2019.001896.
    [16] CHEN Xiaogang, HUANG Xiaoshan, WANG Yijun, et al. Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 3140–3147. doi: 10.1109/TNSRE.2020.3038209
    [17] 左词立, 毛盈, 刘倩倩, 等. 不同复杂度汉字模式下运动想象脑机接口性能研究[J]. 生物医学工程学杂志, 2021, 38(3): 417–424,454. doi: 10.7507/1001-5515.202010031

    ZUO Cili, MAO Ying, LIU Qianqian, et al. Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns[J]. Journal of Biomedical Engineering, 2021, 38(3): 417–424,454. doi: 10.7507/1001-5515.202010031
    [18] CHEN Xiaogang, ZHAO Bing, WANG Yijun, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm[J]. Journal of Neural Engineering, 2019, 16(2): 026012. doi: 10.1088/1741-2552/aaf594
    [19] WONG C M, WANG Ze, WANG Boyu, et al. Inter-and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(10): 2123–2135. doi: 10.1109/TNSRE.2020.3019276
    [20] YANG Chen, HAN Xu, WANG Yijun, et al. A dynamic window recognition algorithm for SSVEP-based brain–computer interfaces using a spatio-temporal equalizer[J]. International Journal of Neural Systems, 2018, 28(10): 1850028. doi: 10.1142/S0129065718500284
    [21] WONG C M, WANG Ze, ROSA A C, et al. Transferring subject-specific knowledge across stimulus frequencies in SSVEP-based BCIs[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 552–563. doi: 10.1109/TASE.2021.3054741
    [22] LI Yao, XIANG Jiayi, and KESAVADAS T. Convolutional correlation analysis for enhancing the performance of SSVEP-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 2681–2690. doi: 10.1109/TNSRE.2020.3038718
    [23] 王春慧, 江京, 李海洋, 等. 基于动态自适应策略的SSVEP快速目标选择方法[J]. 清华大学学报:自然科学版, 2018, 58(9): 788–795. doi: 10.16511/j.cnki.qhdxxb.2018.22.038

    WANG Chunhui, JIANG Jing, LI Haiyang, et al. High-speed target selection method for SSVEP based on a dynamic stopping strategy[J]. Journal of Tsinghua University:Science and Technology, 2018, 58(9): 788–795. doi: 10.16511/j.cnki.qhdxxb.2018.22.038
    [24] 陈小刚, 赵秉, 刘明, 等. 稳态视觉诱发电位脑-机接口控制机械臂系统的设计与实现[J]. 生物医学工程与临床, 2018, 22(3): 20–26. doi: 10.13339/j.cnki.sglc.20180517.002

    CHEN Xiaogang, ZHAO Bing, LIU Ming, et al. Design and implementation of controlling robotic arms using steady-state visual evoked potential brain-computer interface[J]. Biomedical Engineering and Clinical Medicine, 2018, 22(3): 20–26. doi: 10.13339/j.cnki.sglc.20180517.002
    [25] 伏云发, 郭衍龙, 李松, 等. 基于SSVEP直接脑控机器人方向和速度研究[J]. 自动化学报, 2016, 42(11): 1630–1640.

    FU Yunfa, GUO Yanlong, LI Song, et al. Direct-brain-controlled robot direction and speed based on SSVEP brain computer interaction[J]. Acta Automatica Sinica, 2016, 42(11): 1630–1640.
    [26] MAYE A, ZHANG Dan, and ENGEL A K. Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(7): 1026–1036. doi: 10.1109/TNSRE.2017.2666479
    [27] GRUBERT J, LANGLOTZ T, ZOLLMANN S, et al. Towards pervasive augmented reality: Context-awareness in augmented reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(6): 1706–1724. doi: 10.1109/tvcg.2016.2543720
    [28] GAFFARY Y, LE GOUIS B, MARCHAL M, et al. AR Feels "Softer" than VR: Haptic perception of stiffness in augmented versus virtual reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(11): 2372–2377. doi: 10.1109/TVCG.2017.2735078
    [29] KOOP M M, ROSENFELDT A B, JOHNSTON J D, et al. The HoloLens augmented reality system provides valid measures of gait performance in healthy adults[J]. IEEE Transactions on Human-Machine Systems, 2020, 50(6): 584–592. doi: 10.1109/THMS.2020.3016082
    [30] WILLIAMS A S, GARCIA J, and ORTEGA F. Understanding multimodal user gesture and speech behavior for object manipulation in augmented reality using elicitation[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(12): 3479–3489. doi: 10.1109/TVCG.2020.3023566
    [31] JEONG J, LEE C K, LEE B, et al. Holographically printed freeform mirror array for augmented reality near-eye display[J]. IEEE Photonics Technology Letters, 2020, 32(16): 991–994. doi: 10.1109/LPT.2020.3008215
    [32] ARPAIA P, DURACCIO L, MOCCALDI N, et al. Wearable brain–computer interface instrumentation for robot-based rehabilitation by augmented reality[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 6362–6371. doi: 10.1109/TIM.2020.2970846
    [33] PARK S, CHA H S, and IM C H. Development of an online home appliance control system using augmented reality and an SSVEP-based brain–computer interface[J]. IEEE Access, 2019, 7: 163604–163614. doi: 10.1109/ACCESS.2019.2952613
    [34] ZHAO Xincan, LIU Chenyang, XU Zongxin, et al. SSVEP stimulus layout effect on accuracy of brain-computer interfaces in augmented reality glasses[J]. IEEE Access, 2020, 8: 5990–5998. doi: 10.1109/ACCESS.2019.2963442
    [35] ZHOU Yajun, HE Shenghong, HUANG Qiyun, et al. A hybrid asynchronous brain-computer interface combining SSVEP and EOG signals[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(10): 2881–2892. doi: 10.1109/TBME.2020.2972747
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  1466
  • HTML全文浏览量:  802
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回