高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多交互图卷积网络用于方面情感分析

王汝言 陶中原 赵容剑 张普宁 杨志刚

王汝言, 陶中原, 赵容剑, 张普宁, 杨志刚. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111-1118. doi: 10.11999/JEIT210459
引用本文: 王汝言, 陶中原, 赵容剑, 张普宁, 杨志刚. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111-1118. doi: 10.11999/JEIT210459
WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, ZHANG Puning, YANG Zhigang. Multi-interaction Graph Convolutional Networks for Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1111-1118. doi: 10.11999/JEIT210459
Citation: WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, ZHANG Puning, YANG Zhigang. Multi-interaction Graph Convolutional Networks for Aspect-level Sentiment Analysis[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1111-1118. doi: 10.11999/JEIT210459

多交互图卷积网络用于方面情感分析

doi: 10.11999/JEIT210459
基金项目: 国家自然科学基金(61901071, 61871062, 61771082),重庆市高校创新团队建设计划(CXQT20017),重庆市自然科学基金(cstc2019jcyj-zdxmX0024)
详细信息
    作者简介:

    王汝言:男,1969年生,教授,研究方向为泛在网络,多媒体信息处理等

    陶中原:男,1996年生,硕士生,研究方向为自然语言处理,情感分析

    赵容剑:男,1998年生,硕士生,研究方向为自然语言处理,情感分析

    张普宁:男,1988年生,副教授,研究方向为物联网搜索等

    杨志刚:男,1981年生,博士,研究方向为安全隐私保护等

    通讯作者:

    王汝言 wangry@cqupt.edu.cn

  • 中图分类号: TP391.1

Multi-interaction Graph Convolutional Networks for Aspect-level Sentiment Analysis

Funds: The National Natural Science Foundation of China (61901071, 61871062, 61771082), The University Innovation Research Group Program of Chongqing (CXQT20017), The Natural Science Foundation of Chongqing (cstc2019jcyj-zdxmX0024)
  • 摘要: 方面情感分析旨在识别句子中特定方面的情感极性,是一项细粒度情感分析任务。传统基于注意力机制方法,仅在单词之间进行单一的语义交互,没有建立方面词与文本词的语法信息交互,导致方面词错误地关注到与其语法无关的文本词信息。此外,单词的位置距离特征和语法距离特征,分别体现其在句子线性形式中和句子语法依存树中的位置关系,而基于图卷积网络处理语法信息的方法却忽略距离特征,使距方面词较远的无关信息对其情感分析造成干扰。针对上述问题,该文提出多交互图卷积网络(MIGCN),首先将文本词位置距离特征馈入到每层图卷积网络,同时利用依存树中文本词的语法距离特征对图卷积网络的邻接矩阵加权,最后,设计语义交互和语法交互分别处理单词之间语义和语法信息。实验结果表明,在公共数据集上,准确率和宏F1值均优于基准模型。
  • 图  1  方面情感分析任务样例

    图  2  包含相反极性方面词的句子依存树

    图  3  MIGCN模型框架

    图  4  方面为短语的依存树样例

    图  5  GCN网络深度与准确率的关系

    图  6  GCN网络深度与宏F1值的关系

    图  7  方面为单词“staff”的可视化结果

    图  8  方面为短语“Indian food”的可视化结果

    表  1  基于语法加权的邻接矩阵算法(算法1)

     输入:$T$:句子依存树;$a$:句子中方面词;$N$:句子序列长度;
     输出:$\boldsymbol{A}$: 语法加权邻接矩阵;
     (1) 初始化${\boldsymbol{A} } \in {\boldsymbol{R}^{N \times N} }$中所有元素为0;
     (2) 从依存树$T$的根部遍历每个节点$i$:
     (3)    设置矩阵的主对角线元素${{A}_{ii} } = 1$;
     (4)    遍历根为节点$i$的子树中的所有节点$j$;
     (5)      令${{A}_{ij} } = 1$和${{A}_{ji} } = 1$;
     (6)      计算节点$i$与句子中方面词$a$的语法距离$d$;
     (7)      令${{A}_{i{a_i} } } = { {\rm{Weight} } }(d)$和${{A}_{ {a_i}i} } = { {\rm{Weight} } }(d)$。
    下载: 导出CSV

    表  2  数据集的统计

    数据集积极中性消极
    训练集测试集训练集测试集训练集测试集
    Lap14994341464169870128
    Twitter156117331273461560173
    Rest142164728637196807196
    Rest159123263634256182
    Rest1612604696930439117
    下载: 导出CSV

    表  3  不同模型结果对比(%)

    类别模型TwitterLap14Rest14Rest15Rest16
    准确率宏F1准确率宏F1准确率宏F1准确率宏F1准确率宏F1
    基线SVM63.4063.3070.4980.16
    LSTM[2]69.5667.7069.2863.0978.1367.4777.3755.1786.8063.88
    交互
    模型
    IAN[3]72.5070.8172.0567.3879.2670.0978.5452.6584.7455.21
    MGAN[4]72.5470.8175.2770.8181.2571.94
    AOA[17]72.3070.2076.6267.5279.9770.4278.1757.0287.5066.21
    AEN-GloVe[10]72.8369.8173.5169.0480.9872.14
    GCN 模型ASGCN [6]72.1570.4075.5571.0580.7772.0279.8961.8988.9967.48
    TD-GAT[7]72.2070.4575.6370.7481.3271.7280.3860.5087.7167.87
    BiGCN[18]74.1673.3574.5971.8481.9773.4881.1664.7988.9670.84
    kumaGCN[19]72.4570.7776.1272.4281.4373.6480.6965.9989.3973.19
    本文模型MIGCN73.3172.1276.5972.4482.3274.3180.8164.2189.5071.97
    下载: 导出CSV

    表  4  消融实验结果(%)

    模型TwitterLap14Rest14Rest15Rest16
    准确率宏F1准确率宏F1准确率宏F1准确率宏F1准确率宏F1
    MIGCN73.3172.1276.5972.4482.3274.3180.8164.2189.5071.97
    w/o se71.3469.5474.9770.8980.2171.8578..6059.0188.2069.20
    w/o sy72.4570.6475.3471.0381.5573.2979.4062.2289.0266.72
    w/o we72.8870.8876.4972.2881.7373.6479.9564.0088.5871.12
    w/o ga72.9371.4575.9171.8581.8573.5379.5263.9288.5868.98
    w/o sy + ga72.9871.4075.0870.8481.1972.7478.1758.2488.2668.21
    w/o se + ga72.1670.3374.7170.5479.8271.0979.4661.5588.8067.97
    下载: 导出CSV
  • [1] JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[C]. The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, USA, 2011: 151–160.
    [2] TANG Duyu, QIN Bing, FENG Xiaocheng, et al. Effective LSTMs for target-dependent sentiment classification[C]. The 26th International Conference on Computational Linguistics, Osaka, Japan, 2016: 3298–3307.
    [3] MA Dehong, LI Sujian, ZHANG Xiaodong, et al. Interactive attention networks for aspect-level sentiment classification[C]. The 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 4068–4074.
    [4] FAN Feifan, FENG Yansong, and ZHAO Dongya Multi-grained attention network for aspect-level sentiment classification[C]. The 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 3433–3442.
    [5] KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
    [6] ZHANG Chen, LI Qiuchi, and SONG Dawei. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 4568–4578.
    [7] HUANG Binxuan and CARLEY K M. Syntax-aware aspect level sentiment classification with graph attention networks[C]. The 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 5469–5477.
    [8] PHAN M H and OGUNBONA P O. Modelling context and syntactical features for aspect-based sentiment analysis[C]. The 58th Annual Meeting of the Association for Computational Linguistics, Online, 2020: 3211–3220.
    [9] XUE Wei and LI Tao. Aspect based sentiment analysis with gated convolutional networks[C]. The 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 2514–2523.
    [10] SUN Kai, ZHANG Richong, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]. The 2019 Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 5679–5688.
    [11] BAI Xuefeng, LIU Pengbo, and ZHANG Yue. Investigating typed syntactic dependencies for targeted sentiment classification using graph attention neural network[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 503–514. doi: 10.1109/TASLP.2020.3042009
    [12] ZHOU Li, WANG Tingyu, QU Hong, et al. A weighted GCN with logical adjacency matrix for relation extraction[C]. The 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 2020: 2314–2321.
    [13] DONG Li, WEI Furu, TAN Chuanqi, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]. The 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, USA, 2014: 49–54.
    [14] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. Semeval-2014 task 4: Aspect based sentiment analysis[C]. The 8th International Workshop on Semantic Evaluation, Dublin, Ireland, 2014: 27–35.
    [15] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Semeval-2015 task 12: Aspect based sentiment analysis[C]. The 9th International Workshop on Semantic Evaluation, Denver, USA, 2015: 486–495.
    [16] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. Semeval-2016 task 5: Aspect based sentiment analysis[C]. The 8th International Workshop on Semantic Evaluation, San Diego, USA, 2016: 19–30.
    [17] SONG Youwei, WANG Jiahai, JIANG Tao, et al. Targeted sentiment classification with attentional encoder network[C]. 28th International Conference on Artificial Neural Networks and Machine Learning, Munich, Germany, 2019: 93–103.
    [18] ZHANG Mi and QIAN Tieyun. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]. The 2020 Conference on Empirical Methods in Natural Language Processing, Online, 2020: 3540–3549.
    [19] CHEN Chenhua, TENG Zhiyang, and ZHANG Yue. Inducing target-specific latent structures for aspect sentiment classification[C]. The 2020 Conference on Empirical Methods in Natural Language Processing, Online, 2020: 5596–5607.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  2290
  • HTML全文浏览量:  937
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-25
  • 修回日期:  2021-09-07
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回