高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于加权K-近邻分类的非视距识别方法研究

韦子辉 解云龙 王世昭 叶兴跃 张要发 方立德

韦子辉, 解云龙, 王世昭, 叶兴跃, 张要发, 方立德. 基于加权K-近邻分类的非视距识别方法研究[J]. 电子与信息学报, 2022, 44(8): 2842-2851. doi: 10.11999/JEIT210422
引用本文: 韦子辉, 解云龙, 王世昭, 叶兴跃, 张要发, 方立德. 基于加权K-近邻分类的非视距识别方法研究[J]. 电子与信息学报, 2022, 44(8): 2842-2851. doi: 10.11999/JEIT210422
WEI Zihui, XIE Yunlong, WANG Shizhao, YE Xingyue, ZHANG Yaofa, FANG Lide. Research on Non-Line-Of-Sight Recognition Method Based on Weighted K-Nearest Neighbor Classification[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2842-2851. doi: 10.11999/JEIT210422
Citation: WEI Zihui, XIE Yunlong, WANG Shizhao, YE Xingyue, ZHANG Yaofa, FANG Lide. Research on Non-Line-Of-Sight Recognition Method Based on Weighted K-Nearest Neighbor Classification[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2842-2851. doi: 10.11999/JEIT210422

基于加权K-近邻分类的非视距识别方法研究

doi: 10.11999/JEIT210422
基金项目: 国家自然科学基金(61475041),京津冀协同创新共同体建设专项(20540301D),河北省自然科学基金(E2017201142),河北省研究生创新资助项目(hbu2020ss063)
详细信息
    作者简介:

    韦子辉:男,1977年生,副教授,研究方向为超宽带射频定位技术

    解云龙:男,1996年生,硕士生,研究方向为定位算法、NLOS识别

    王世昭:男,1997年生,硕士生,研究方向为定位算法、超宽带射频定位

    叶兴跃:男,1997年生,硕士生,研究方向为超宽带定位算法、惯性导航

    张要发:男,1993年生,硕士生,研究方向为定位算法、超宽带射频定位

    方立德:男,1974年生,教授,研究方向为检测技术与自动化装置

    通讯作者:

    方立德 fanglide@sina.com

  • 中图分类号: TN919.72; TP391

Research on Non-Line-Of-Sight Recognition Method Based on Weighted K-Nearest Neighbor Classification

Funds: The National Natural Science Foundation of China (61475041), Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project (20540301D), The Natural Science Foundation of Hebei Province (E2017201142), The Graduate Innovation Funding Project of Hebei Province (hbu2020ss063)
  • 摘要: 超宽带(UWB)定位系统中,针对复杂的环境下,信号的遮挡、直达信号的错误判断严重影响定位精度问题,该文基于信道冲激响应(CIR)提出一种新型特征参量——饱和度(S),结合前人提出的特征参量利用Relief算法和互信息特征选择(MIFS)算法进行特征选择,在相关性的基础上赋予特征相应的权重,选择最优的特征子集进行加权K-近邻(WKNN)分类,提高了非视距(NLOS)识别系统准确度。并且分析了WKNN算法中的训练数据集数量与近邻数K对算法的影响,确定优选方案,减小了算法计算量,提高了NLOS识别系统实时性。在不同环境下进行实验验证,结果表明,该方法具备较高的识别准确度和环境适用性,识别精度达到95%。
  • 图  1  NLOS识别方法流程

    图  2  CIR波形阈值设置示意图

    图  3  室内特征参量箱线图

    图  4  K-精度曲线

    图  5  NLOS识别系统图

    图  6  实验环境

    图  7  WKNN分类效果图

    表  1  各特征参量的数学模型

    特征参量数学模型
    峭度 (kurtosis, $ k $)$k = \dfrac{ {{\rm{E}}\left\{ { { {\left[ {\left| {h\left( t \right)} \right| - {\mu _{\left| h \right|} } } \right]}^4} } \right\} } }{ {{\rm{E}}{ {\left\{ { { {\left[ {\left| {h\left( t \right)} \right| - {\mu _{\left| h \right|} } } \right]}^2} } \right\} }^2} } } = \dfrac{ {{\rm{E}}\left\{ { { {\left[ {\left| {h\left( t \right)} \right| - {\mu _{\left| h \right|} } } \right]}^4} } \right\} } }{ {\sigma _{\left| h \right|}^4} }$
    偏度 (skewness, $ {\text{ske}} $)${\text{ske = } }\dfrac{ {{\rm{E}}\left[ { { {\left( {\left| {h\left( t \right)} \right| - {\mu _{\left| h \right|} } } \right)}^3} } \right]} }{ {\sigma _{\left| h \right|}^3} }$
    最大振幅 (maximum amplitude, $ {r_{\max }} $)$ {r_{{\text{max}}}} = \max \left\{ {\left| {r\left( {{t_i}} \right)} \right|} \right\} $
    总能量 (total energy, $ \varepsilon $)$ \varepsilon = {\displaystyle\sum\limits_{i = 1}^N {\left| {r\left( {{t_i}} \right)} \right|} ^2} $
    上升时间 (rise time, $ {t_{\rm{rise}}} $)$\begin{gathered}{t_{ {\text{rise} } } } = {t_{ {\text{stop} } } } - {t_{ {\text{start} } } } \\ \left\{ {\begin{array}{*{20}{c} }{ {t_{ {\text{start} } } } = \min \left\{ { {t_i}:\left| {r\left( { {t_i} } \right)} \right| \ge 0.1{r_{\max } } } \right\} } \\ { {t_{ {\text{stop} } } } = \min \left\{ { {t_i}:\left| {r\left( { {t_i} } \right)} \right| \ge 0.9{r_{\max } } } \right\} } \end{array} } \right. \\ \end{gathered}$
    平均附加时延 (mean excess delay, $ {\tau _{{\text{med}}}} $)$ {\tau _{{\text{med}}}} = \dfrac{1}{\varepsilon }\displaystyle\sum\limits_{i = 1}^N {\left( {{t_i}{{\left| {r\left( {{t_i}} \right)} \right|}^2}} \right)} $
    均方根延迟传播 (root-mean-squre delay spread, $ {\tau _{{\text{rms}}}} $)$ {\tau _{{\text{rms}}}} = \dfrac{1}{\varepsilon }\displaystyle\sum\limits_{i = 1}^N {\left[ {{{\left( {{t_i} - {\tau _{{\text{med}}}}} \right)}^2}{{\left| {r\left( {{t_i}} \right)} \right|}^2}} \right]} $
    下载: 导出CSV

    表  2  各参量与分类标签的相关性

    特征参量$ {\text{ske}} $$ k $$ {r_{\max }} $$ \varepsilon $
    权值0.16070.253717.29571.9692
    特征参量$ {t_{{\text{rise}}}} $$ {\tau _{{\text{med}}}} $$ {\tau _{{\text{rms}}}} $$ S $
    权值26.306213.03161.813634.2643
    下载: 导出CSV

    表  3  两特征参量之间的冗余度

    $ {t_{{\text{rise}}}} $$ {\tau _{{\text{med}}}} $$ {r_{\max }} $$ S $
    $ {t_{{\text{rise}}}} $1
    $ {\tau _{{\text{med}}}} $0.49321
    $ {r_{\max }} $0.47740.83451
    $ S $0.60500.73050.72231
    下载: 导出CSV

    表  4  混淆矩阵

    混淆矩阵预测值
    传播信道为LOS传播信道NLOS
    真实值传播信道为LOSTPFN
    传播信道NLOSFPTN
    下载: 导出CSV

    表  5  单一参量在不同信道(CM)下的识别精度

    CM1CM2CM3CM4CM5CM6
    $ k $0.57170.89170.85670.87500.59500.6417
    $ {\text{ske}} $0.54500.59830.69000.68670.55170.5400
    $ {r_{\max }} $0.80830.85830.95830.81500.97330.9450
    $ \varepsilon $0.89830.81670.95500.81670.99670.8867
    $ {t_{{\text{rise}}}} $0.92670.92170.90670.69330.66170.7333
    $ {\tau _{{\text{med}}}} $0.88170.92500.98000.79830.90000.8967
    $ {\tau _{\rm{rms} }} $0.56670.90830.59000.78670.72000.8167
    $ S $0.91330.92670.90670.69670.68270.7467
    下载: 导出CSV

    表  6  多参量对不同信道(CM)的识别精度

    CM1CM2CM3CM4CM5CM6
    $ {r_{{\text{max}}}} + {t_{{\text{rise}}}} $0.96750.92250.98250.98250.95500.9500
    $ {t_{{\text{rise}}}} + S $0.91250.92500.90000.93250.64750.6875
    $ k + {\tau _{{\text{rms}}}} $0.49250.77500.79250.76250.75500.7975
    $ {\tau _{{\text{med}}}} + {\tau _{{\text{rms}}}} $0.87750.91250.95250.94750.91000.7500
    $ {\text{ske}} + k + {\tau _{{\text{med}}}} $0.67750.75750.78000.77500.92250.8200
    $ {\text{ske}} + k + {t_{{\text{rise}}}} $0.89000.86000.87500.49250.80250.7900
    $ k + {\tau _{{\text{med}}}} + {\tau _{{\text{rms}}}} $0.84500.88750.93000.93250.85000.7375
    $ {r_{{\text{max}}}} + {t_{{\text{rise}}}} + {\tau _{{\text{med}}}} $0.94000.93750.97750.97750.95750.9525
    $ {{\boldsymbol{r}}_{{\bf{max}}}} + {{\boldsymbol{t}}_{{\bf{rise}}}} + {\boldsymbol{S}} $0.97250.95250.98750.98250.96750.9600
    $ {r_{{\text{max}}}} + {t_{{\text{rise}}}} + k $0.79500.85250.80500.97500.80250.7600
    $ {t_{{\text{rise}}}} + {\tau _{{\text{med}}}} + S $0.92750.95750.97000.97250.88250.7625
    $ {t_{{\text{rise}}}} + \varepsilon + {\tau _{{\text{med}}}} $0.93000.93250.98250.97250.96250.9525
    $ \varepsilon + {\tau _{{\text{rms}}}} + {\tau _{{\text{med}}}} $0.90250.92000.97250.96750.98000.8925
    下载: 导出CSV
  • [1] 王振朝, 曹永青, 韦子辉. 基于WSN的射频定位技术[J]. 河北大学学报: 自然科学版, 2013, 33(5): 554–560. doi: 10.3969/j.issn.1000-1565.2013.05.020

    WANG Zhenchao, CAO Yongqing, and WEI Zihui. Radiofrequency positioning technology based on WSN[J]. Journal of Hebei University:Natural Science Edition, 2013, 33(5): 554–560. doi: 10.3969/j.issn.1000-1565.2013.05.020
    [2] 肖竹, 王勇超, 田斌, 等. 超宽带定位研究与应用: 回顾和展望[J]. 电子学报, 2011, 39(1): 133–141.

    XIAO Zhu, WANG Yongchao, TIAN Bin, et al. Development and prospect of ultra-wideband localization research and application[J]. Acta Electronica Sinica, 2011, 39(1): 133–141.
    [3] SCHROEDER J, GALLER S, KYAMAKYA K, et al. NLOS detection algorithms for Ultra-Wideband localization[C]. The 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 2007: 159–166. doi: 10.1109/WPNC.2007.353628.
    [4] YAN Leibing, LU Yin, and ZHANG Yerong. An improved NLOS identification and mitigation approach for target tracking in wireless sensor networks[J]. IEEE Access, 2017, 5: 2798–2807. doi: 10.1109/ACCESS.2017.2677480
    [5] 王长强, 徐爱功, 隋心. UWB测距的NLOS误差削弱方法[J]. 导航定位学报, 2017, 5(3): 24–27, 32. doi: 10.3969/j.issn.2095-4999.2017.03.006

    WANG Changqiang, XU Aigong, and SUI Xin. A method of NLOS error inhibition for UWB ranging[J]. Journal of Navigation and Positioning, 2017, 5(3): 24–27, 32. doi: 10.3969/j.issn.2095-4999.2017.03.006
    [6] CASAS R, MARCO A, GUERRERO J J, et al. Robust estimator for non-line-of-sight error mitigation in indoor localization[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006(1): 043429. doi: 10.1155/ASP/2006/43429
    [7] GUSTAFSON D E, ELWELL J M, and SOLTZ J A. Innovative indoor geolocation using RF multipath diversity[C]. 2006 IEEE/ION Position, Location, and Navigation Symposium, Coronado, USA, 2006: 904–912. doi: 10.1109/PLANS.2006.1650690.
    [8] 孙希延, 刘健, 纪元法, 等. 基于似然比检验的超宽带信道检测与定位算法[J]. 电子与信息学报, 2017, 39(3): 590–597. doi: 10.11999/JEIT160484

    SUN Xiyan, LIU Jian, JI Yuanfa, et al. UWB channel detection and location algorithm based on likelihood ratio test[J]. Journal of Electronics &Information Technology, 2017, 39(3): 590–597. doi: 10.11999/JEIT160484
    [9] MARANÒ S, GIFFORD W M, WYMEERSCH H, et al. NLOS identification and mitigation for localization based on UWB experimental data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026–1035. doi: 10.1109/JSAC.2010.100907
    [10] MIAO Zhimin, ZHAO Luwen, YUAN Weiwei, et al. Application of one-class classification in NLOS identification of UWB positioning[C]. 2016 International Conference on Information System and Artificial Intelligence, Hong Kong, China, 2016: 318–322. doi: 10.1109/ISAI.2016.0074.
    [11] YANG Xiaofeng, ZHAO Feng, and CHEN Tiejun. NLOS identification for UWB localization based on import vector machine[J]. AEU-International Journal of Electronics and Communications, 2018, 87: 128–133. doi: 10.1016/j.aeue.2018.02.003
    [12] HUANG An, TIAN Lei, JIANG Tao, et al. NLOS identification for wideband mmWave systems at 28 GHz[C]. The 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 2019: 1–6. doi: 10.1109/VTCSpring.2019.8746362.
    [13] MUCCHI L and MARCOCCI P. A new parameter for UWB indoor channel profile identification[J]. IEEE Transactions on Wireless Communications, 2009, 8(4): 1597–1602. doi: 10.1109/TWC.2009.070318
    [14] 张浩, 梁晓林, 吕婷婷, 等. 一种新颖的基于偏度的非视距区分算法[J]. 电讯技术, 2015, 55(5): 484–490. doi: 10.3969/j.issn.1001-893x.2015.05.004

    ZHANG Hao, LIANG Xiaolin, LYU Tingting, et al. A novel non-line-of-sight identification algorithm based on skewness[J]. Telecommunication Engineering, 2015, 55(5): 484–490. doi: 10.3969/j.issn.1001-893x.2015.05.004
    [15] 纪元法, 杨政权, 孙希延, 等. 基于信道特征的超宽带非视距鉴别及定位算法[J]. 科学技术与工程, 2018, 18(19): 66–71. doi: 10.3969/j.issn.1671-1815.2018.19.011

    JI Yuanfa, YANG Zhengquan, SUN Xiyan, et al. UWB non-line-of-sight identification and location algorithm based on channel features[J]. Science Technology and Engineering, 2018, 18(19): 66–71. doi: 10.3969/j.issn.1671-1815.2018.19.011
    [16] GUVENC I, CHONG C C, and WATANABE F. NLOS identification and mitigation for UWB localization systems[C]. 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China, 2007: 1571–1576. doi: 10.1109/WCNC.2007.296.
    [17] 范学满, 胡生亮, 贺静波. 对海雷达目标识别中全极化HRRP的特征提取与选择[J]. 电子与信息学报, 2016, 38(12): 3261–3268. doi: 10.11999/JEIT160722

    FAN Xueman, HU Shengliang, and HE Jingbo. Feature extraction and selection of full polarization HRRP in target recognition process of maritime surveillance radar[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3261–3268. doi: 10.11999/JEIT160722
    [18] JIN Cheng, KONG Xianguang, CHANG Jiantao, et al. Internal crack detection of castings: A study based on relief algorithm and Adaboost-SVM[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(9/10): 3313–3322. doi: 10.1007/s00170-020-05368-w
    [19] HUANG Wanwei, ZHANG Jianwei, SUN Haiyan, et al. An anomaly detection method based on normalized mutual information feature selection and quantum wavelet neural network[J]. Wireless Personal Communications, 2017, 96(2): 2693–2713. doi: 10.1007/s11277-017-4320-2
    [20] ZHENG Jianyang, ZHU Hexing, CHANG Fangfang, et al. An improved relief feature selection algorithm based on Monte-Carlo tree search[J]. Systems Science & Control Engineering, 2019, 7(1): 304–310. doi: 10.1080/21642583.2019.1661312
    [21] 姚英彪, 毛伟勇, 姚瑞丽, 等. 基于改进支持向量回归的室内定位算法[J]. 仪器仪表学报, 2017, 38(9): 2112–2119. doi: 10.3969/j.issn.0254-3087.2017.09.003

    YAO Yingbiao, MAO Weiyong, YAO Ruili, et al. Indoor positioning algorithm based on improved support vector regression[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2112–2119. doi: 10.3969/j.issn.0254-3087.2017.09.003
    [22] NARAYAN Y. Comparative analysis of SVM and Naive Bayes classifier for the SEMG signal classification[J]. Materials Today: Proceedings, 2021, 37: 3241–3245. doi: 10.1016/j.matpr.2020.09.093
    [23] YANG Haifeng, ZHANG Yongbo, HUANG Yuliang, et al. WKNN indoor location algorithm based on zone partition by spatial features and restriction of former location[J]. Pervasive and Mobile Computing, 2019, 60: 101085. doi: 10.1016/j.pmcj.2019.101085
    [24] 李炜, 李全龙, 刘政怡. 基于加权的K近邻线性混合显著性目标检测[J]. 电子与信息学报, 2019, 41(10): 2442–2449. doi: 10.11999/JEIT190093

    LI Wei, LI Quanlong, and LIU Zhengyi. Salient object detection using weighted K-nearest neighbor linear blending[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2442–2449. doi: 10.11999/JEIT190093
    [25] 孔英会, 景美丽. 基于混淆矩阵和集成学习的分类方法研究[J]. 计算机工程与科学, 2012, 34(6): 111–117. doi: 10.3969/j.issn.1007-130X.2012.06.022

    KONG Yinghui and JING Meili. Research of the classification method based on confusion matrixes and ensemble learning[J]. Computer Engineering &Science, 2012, 34(6): 111–117. doi: 10.3969/j.issn.1007-130X.2012.06.022
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  1263
  • HTML全文浏览量:  570
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2021-09-11
  • 网络出版日期:  2021-09-27
  • 刊出日期:  2022-08-17

目录

    /

    返回文章
    返回