高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进剥层法的南极冰盖密度反演算法

杨望笑 窦银科 稂时楠 赵博 王煜尘 左广宇

杨望笑, 窦银科, 稂时楠, 赵博, 王煜尘, 左广宇. 基于改进剥层法的南极冰盖密度反演算法[J]. 电子与信息学报, 2022, 44(4): 1311-1317. doi: 10.11999/JEIT210410
引用本文: 杨望笑, 窦银科, 稂时楠, 赵博, 王煜尘, 左广宇. 基于改进剥层法的南极冰盖密度反演算法[J]. 电子与信息学报, 2022, 44(4): 1311-1317. doi: 10.11999/JEIT210410
YANG Wangxiao, DOU Yinke, LANG Shinan, ZHAO Bo, WANG Yuchen, ZUO Guangyu. Antarctic Ice Sheet Density Inversion Algorithm Based on Improved Layer Stripping Method[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1311-1317. doi: 10.11999/JEIT210410
Citation: YANG Wangxiao, DOU Yinke, LANG Shinan, ZHAO Bo, WANG Yuchen, ZUO Guangyu. Antarctic Ice Sheet Density Inversion Algorithm Based on Improved Layer Stripping Method[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1311-1317. doi: 10.11999/JEIT210410

基于改进剥层法的南极冰盖密度反演算法

doi: 10.11999/JEIT210410
基金项目: 国家自然科学基金(41776199)
详细信息
    作者简介:

    杨望笑:男,1994年生,博士生,研究方向为雷达信号处理与应用

    窦银科:男,1973年生,博士,教授,研究方向为新型传感与智能仪器技术

    稂时楠:女,1988年生,博士,副教授,研究方向为智能信号处理与应用

    赵博:男,1986年生,博士,副研究员,研究方向为数据采集与处理、雷达系统与技术

    王煜尘:男,1995年生,博士生,研究方向为机器学习与机器人的路径规划算法

    左广宇:男,1990年生,博士,研究方向为冰盖力学分析

    通讯作者:

    窦银科 douyk8888cn@126.com

  • 中图分类号: TN959.3

Antarctic Ice Sheet Density Inversion Algorithm Based on Improved Layer Stripping Method

Funds: The National Natural Science Foundation of China (41776199)
  • 摘要: 南极冰盖的密度-深度数据是建立高精度表面物质平衡模型时的关键参数。该文提出一种基于调频连续波(FMCW)雷达的冰盖密度和介电常数反演算法。该算法首先利用剥层反演法初步反演密度剖面,然后利用反演的密度和冰盖密实化经验公式建立密度剖面模型,最后通过优化算法寻找最优密度模型参数,从而达到校准密度的目的。基于理论冰盖模型和实测雷达数据的实验结果验证了算法的有效性。
  • 图  1  FMCW雷达工作示意图

    图  2  冰芯B31密度和相对介电常数

    图  3  冰芯B31的介电常数标准差和密度变化率归一化

    图  4  冰盖密度反演和校准流程图

    图  5  冰芯B31的密度反演结果

    图  6  冰芯LGB69附近的密度反演结果

  • [1] GUO Jingxue, YANG Wangxiao, DOU Yinke, et al. Historical surface mass balance from a frequency-modulated continuous-wave (FMCW) radar survey from Zhongshan station to Dome A[J]. Journal of Glaciology, 2020, 66(260): 965–977. doi: 10.1017/jog.2020.58
    [2] YANG Wangxiao, DOU Yinke, LANG Shinan, et al. Distribution of shallow isochronous layers in East Antarctica inferred from frequency-modulated continuous-wave (FMCW) radar[J]. Annals of Geophysics, 2020, 63(4): RS413. doi: 10.4401/ag-7794
    [3] KOVACS A, GOW A J, and MOREY R M. The in-situ dielectric constant of polar firn revisited[J]. Cold Regions Science and Technology, 1995, 23(3): 245–256. doi: 10.1016/0165-232X(94)00016-Q
    [4] BROWN J, BRADFORD J, HARPER J, et al. Georadar-derived estimates of firn density in the percolation zone, western Greenland ice sheet[J]. Journal of Geophysical Research:Earth Surface, 2012, 117(F1): F01011. doi: 10.1029/2011JF002089
    [5] ARTHERN R J, CORR H F J, GILLET-CHAULET F, et al. Inversion for the density-depth profile of polar firn using a stepped-frequency radar[J]. Journal of Geophysical Research:Earth Surface, 2013, 118(3): 1257–1263. doi: 10.1002/jgrf.20089
    [6] YANG Wangxiao, DOU Yinke, ZHAO Bo, et al. Inversion for the density–depth profile of Dome A, East Antarctica, using frequency-modulated continuous wave radar[J]. Journal of Glaciology, 2021, 67(266): 1213–1227. doi: 10.1017/jog.2021.70
    [7] SPAGNOLINI U. Permittivity measurements of multilayered media with monostatic pulse radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(2): 454–463. doi: 10.1109/36.563284
    [8] 戴前伟, 陈威, 张彬. 改进型粒子群算法及其在GPR全波形反演中的应用[J]. 物探与化探, 2019, 43(1): 90–99. doi: 10.11720/wtyht.2019.1183

    DAI Qianwei, CHEN Wei, and ZHANG Bin. Improved particle swarm optimization and its application to full-waveform inversion of GPR[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 90–99. doi: 10.11720/wtyht.2019.1183
    [9] ARCONE S A, SPIKES V B, HAMILTON G S, et al. Stratigraphic continuity in 400 MHz short-pulse radar profiles of firn in West Antarctica[J]. Annals of Glaciology, 2004, 39: 195–200. doi: 10.3189/172756404781813925
    [10] 俞燕浓, 方广有. 一种反演地下介质参数的新算法[J]. 电子与信息学报, 2009, 31(3): 619–622.

    YU Yannong and FANG Guangyou. A new algorithm for underground medium parameters inversion[J]. Journal of Electronics &Information Technology, 2009, 31(3): 619–622.
    [11] OERTER H, WILHELMS F, JUNG-ROTHENHÄUSLER F, et al. Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores[J]. Annals of Glaciology, 2000, 30: 27–34. doi: 10.3189/172756400781820705
    [12] DEACONU C, VIEREGG A G, WISSEL S A, et al. Measurements and modeling of near-surface radio propagation in glacial ice and implications for neutrino experiments[J]. Physical Review D, 2018, 98(4): 043010. doi: 10.1103/PhysRevD.98.043010
    [13] LEWIS C, GOGINENI S, RODRIGUEZ-MORALES F, et al. Airborne fine-resolution UHF radar: An approach to the study of englacial reflections, firn compaction and ice attenuation rates[J]. Journal of Glaciology, 2015, 61(225): 89–100. doi: 10.3189/2015JoG14J089
    [14] 黄忠来, 张建中. 利用探地雷达频谱反演层状介质几何与电性参数[J]. 地球物理学报, 2013, 56(4): 1381–1391. doi: 10.6038/cjg20130432

    HUANG Zhonglai and ZHANG Jianzhong. An inversion method for geometric and electric parameters of layered media using spectrum of GPR signal[J]. Chinese Journal of Geophysics, 2013, 56(4): 1381–1391. doi: 10.6038/cjg20130432
    [15] HÖRHOLD M W, KIPFSTUHL S, WILHELMS F, et al. The densification of layered polar firn[J]. Journal of Geophysical Research:Earth Surface, 2011, 116(F1): F01001. doi: 10.1029/2009JF001630
    [16] ARTHERN R J, VAUGHAN D G, RANKIN A M, et al. In situ measurements of Antarctic snow compaction compared with predictions of models[J]. Journal of Geophysical Research:Earth Surface, 2010, 115(F3): F03011. doi: 10.1029/2009JF001306
    [17] DALL J. Ice sheet anisotropy measured with polarimetric ice sounding radar[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 2507–2510.
  • 加载中
图(6)
计量
  • 文章访问数:  855
  • HTML全文浏览量:  570
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-09-03
  • 网络出版日期:  2021-09-17
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回