高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对角积分双谱的海面慢速小目标检测方法

关键 伍僖杰 丁昊 刘宁波 董云龙 张鹏飞

关键, 伍僖杰, 丁昊, 刘宁波, 董云龙, 张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法[J]. 电子与信息学报, 2022, 44(7): 2449-2460. doi: 10.11999/JEIT210408
引用本文: 关键, 伍僖杰, 丁昊, 刘宁波, 董云龙, 张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法[J]. 电子与信息学报, 2022, 44(7): 2449-2460. doi: 10.11999/JEIT210408
GUAN Jian, WU Xijie, DING Hao, LIU Ningbo, DONG Yunlong, ZHANG Pengfei. A Method for Detecting Small Slow Targets in Sea Surface Based on Diagonal Integrated Bispectrum[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2449-2460. doi: 10.11999/JEIT210408
Citation: GUAN Jian, WU Xijie, DING Hao, LIU Ningbo, DONG Yunlong, ZHANG Pengfei. A Method for Detecting Small Slow Targets in Sea Surface Based on Diagonal Integrated Bispectrum[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2449-2460. doi: 10.11999/JEIT210408

基于对角积分双谱的海面慢速小目标检测方法

doi: 10.11999/JEIT210408
基金项目: 国家自然科学基金(62101583, 61871392, 61871391)
详细信息
    作者简介:

    关键:男,1967年生,教授,研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合

    伍僖杰:男,1997年生,硕士生,研究方向为海杂波中目标检测

    丁昊:男,1988年生,副教授,研究方向为海杂波特性认知与抑制、海杂波中目标检测

    刘宁波:男,1983年生,副教授,研究方向为雷达信号智能处理、海上目标探测技术

    董云龙:男,1974年生,教授,研究方向为多传感器信息融合

    张鹏飞:男,1988年生,研究方向为飞行与指挥管理工作

    通讯作者:

    丁昊 hao3431@tom.com

  • 中图分类号: TN959

A Method for Detecting Small Slow Targets in Sea Surface Based on Diagonal Integrated Bispectrum

Funds: The National Natural Science Foundation of China (62101583, 61871392, 61871391)
  • 摘要: 针对海杂波背景下雷达对海面慢速小目标探测技术难题,该文提出一种基于对角积分双谱的三特征融合检测方法。该方法首先从待检测信号的估计双谱中获得对角积分双谱,而后根据海杂波单元与目标单元之间的非线性耦合差异性,进一步从对角积分双谱中提取峰值、质心频率、谱宽3种特征。考虑到扫描模式下雷达采用的相干脉冲数通常较少,易导致特征不稳定,进而影响海杂波与目标可分性,为此,通过多帧扫描历史数据和当前帧数据的综合应用,对谱特征进行积累得到累积峰值、全变差、累积谱宽3种累积特征。最后采用凸包分类算法,在三特征空间进行融合检测。经实测CSIR数据集验证,在同等参数条件下,该文检测方法相比已有基于时频三特征的检测方法,基于幅度、多普勒三特征检测方法和分形特征检测方法具有更好的检测性能。
  • 图  1  海杂波和目标单元双谱估计结果

    图  2  海杂波、目标单元对角积分双谱

    图  3  两类距离单元的对角积分双谱图

    图  4  峰值、谱宽谱及直方图

    图  5  两类累积特征直方图

    图  6  质心谱及全变差特征直方图

    图  7  不同虚警率时的凸包分类结果

    图  8  检测器框图

    图  9  4种特征空间内的巴氏距离对比

    图  10  特征来源不同时本文检测器的性能对比

    图  11  变虚警时4类检测器的性能变化(N=64)

    图  12  4类检测器的性能比较

    图  13  4类检测器的检测性能曲线

    表  1  CSIR数据库中17个数据集的环境参数

    编号数据集名称截取时间(s)平均风速(m/s)有效波高(m)夹角(°)目标单元信杂比(dB)
    1TFA17_0014.455.402.26253.702710.10
    2TFA17_00413.255.412.26253.6827~293.72
    3TFA17_00512.175.422.26253.683112.44
    4TFA17_00613.475.422.26253.6829, 307.57
    5TFA17_00713.475.442.26253.692411.57
    6TFA17_00813.475.442.26253.7023, 247.88
    7TFA17_0094.005.452.26253.71237.25
    8TFA17_01026.735.472.27253.7323, 249.14
    9TFA17_0114.605.502.28253.772510.49
    10TFA17_01239.686.122.30254.5014~179.82
    11TFA17_01339.686.132.30254.4818~207.78
    12TFA17_01426.736.262.35254.1218~202.61
    13TFC17_00113.475.342.27253.6827, 289.90
    14TFC17_00213.475.362.26253.6726~284.11
    15TFC17_00420.006.102.28254.551113.93
    16TFC17_00515.146.112.28254.5312, 1311.84
    17TFC17_00626.736.282.35254.0524~265.07
    下载: 导出CSV

    表  2  特征来源不同时本文检测器的检测概率(%)

    LDIB, N=128DSS, N=128DIB, N=64DSS, N=64DIB, N=32DSS, N=32
    1085.7581.8773.7572.2071.1566.83
    2093.7089.7681.3577.8576.5375.56
    3095.2193.0988.6685.9278.3978.55
    4098.3892.9992.2690.4284.6384.30
    5098.3693.1794.7293.0088.9688.80
    6099.1796.1295.0894.4191.0490.88
    7099.4497.7595.8594.2492.8192.81
    80100.0098.8697.7196.5094.2693.44
    90100.00100.0099.1997.5695.5694.74
    100100.00100.0099.8697.2796.8696.37
    下载: 导出CSV

    表  3  4类检测器的检测概率(N=64)(%)

    本文所提检测器时频三特征检测器幅度、多普勒峰高和多普勒商三特征检测器分形检测器
    虚警率0.00192.2627.5332.394.87
    虚警率0.0192.7845.1332.4614.21
    虚警率0.1100.0083.6783.3546.41
    下载: 导出CSV

    表  4  相干脉冲数N降低时检测器的性能变化(%)

    编号本文所提检测器时频三特征检测器幅度、多普勒峰高和多普勒商三特征检测器分形检测器
    N=128N=64降低量N=128N=64降低量N=128N=64降低量N=128N=64降低量
    197.0189.617.4063.581.4462.1434.1029.394.710.000.29–0.29
    252.7249.303.4227.667.6420.028.904.354.550.000.000.00
    367.4356.5810.8530.3215.4714.8425.2619.585.682.743.26–0.53
    450.6237.2813.3421.905.9915.929.147.511.630.000.29–0.29
    572.1382.05–9.9218.0610.277.7917.8713.314.565.511.623.90
    638.1138.46–0.3512.366.755.6119.966.4613.500.000.38–0.38
    750.8540.1510.7027.5618.279.2919.8712.827.050.640.000.64
    841.7549.17–7.4217.937.8510.0724.2616.198.073.070.862.21
    947.1471.25–24.1137.9920.6117.3827.3720.616.762.791.111.68
    1088.6289.93–1.3146.9614.9732.0051.1031.1619.945.365.52–0.15
    1172.4970.801.6830.7312.7417.9919.2411.487.750.900.550.36
    1249.1040.828.2821.264.8416.422.782.640.140.380.91–0.53
    1368.7264.893.8312.745.327.4123.7615.787.985.132.192.95
    1450.6239.2511.3727.0015.4911.5012.557.704.853.800.862.95
    1598.3892.266.1361.7227.5334.1936.8832.394.488.194.873.33
    1698.5588.999.5660.4133.2527.1656.1844.4211.768.293.474.82
    1766.1456.299.8426.159.5816.5717.0512.704.353.162.400.77
    下载: 导出CSV
  • [1] 关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114

    GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114
    [2] 王雪松, 杨勇. 海杂波与目标极化特性研究进展[J]. 电波科学学报, 2019, 34(6): 665–675. doi: 10.13443/j.cjors.2019103101

    WANG Xuesong and YANG Yong. Overview on cognition of clutter and target polarization characteristics for maritime radar[J]. Chinese Journal of Radio Science, 2019, 34(6): 665–675. doi: 10.13443/j.cjors.2019103101
    [3] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [4] 张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441

    ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against K-distributed sea clutter for coherent radar systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
    [5] 许述文, 薛健, 水鹏朗. 基于知识的海杂波背景下距离扩展目标检测[J]. 电子与信息学报, 2016, 38(12): 3004–3010. doi: 10.11999/JEIT160905

    XU Shuwen, XUE Jian, and SHUI Penglang. Adaptive detection of range-spread targets based on knowledge in sea clutter background[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3004–3010. doi: 10.11999/JEIT160905
    [6] 徐涛, 吴军, 夏海宝, 等. 基于频域CFAR方法的PD雷达回波信号处理[J]. 现代防御技术, 2012, 40(1): 140–143. doi: 10.3969/j.issn.1009-086x.2012.01.030

    XU Tao, WU Jun, XIA Haibao, et al. PD radar echo processing based on the method of CFAR in frequency domain[J]. Modern Defence Technology, 2012, 40(1): 140–143. doi: 10.3969/j.issn.1009-086x.2012.01.030
    [7] 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084
    [8] HU Jing, TUNG W W, and GAO Jianbo. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136–143. doi: 10.1109/TAP.2005.861541
    [9] LUO Feng, ZHANG Danting, and ZHANG Bo. The fractal properties of sea clutter and their applications in maritime target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1295–1299. doi: 10.1109/LGRS.2013.2237750
    [10] FAN Yifei, TAO Mingliang, SU Jia, et al. Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1824–1828. doi: 10.1109/LGRS.2019.2912329
    [11] SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657
    [12] SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260
    [13] 郭子薰, 水鹏朗, 白晓惠, 等. 海杂波中基于可控虚警K近邻的海面小目标检测[J]. 雷达学报, 2020, 9(4): 654–663. doi: 10.12000/JR20055

    GUO Zixun, SHUI Penglang, BAI Xiaohui, et al. Sea-surface small target detection based on K-NN with controlled false alarm rate in sea clutter[J]. Journal of Radars, 2020, 9(4): 654–663. doi: 10.12000/JR20055
    [14] GUO Zixun and SHUI Penglang. Anomaly based sea-surface small target detection using K-nearest neighbor classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4947–4964. doi: 10.1109/TAES.2020.3011868
    [15] SHUI Penglang, GUO Zixun, and SHI Sainan. Feature-compression-based detection of sea-surface small targets[J] IEEE Access, 2019, 8: 8371–8385. doi: 10.1109/ACCESS.2019.2962793.
    [16] SHUI Penglang, GUO Zixun. Sea-surface floating small target detection based on feature compression[J]. The Journal of Engineering, 2019, 2019(21): 8160–8164. doi: 10.1049/joe.2019.0694
    [17] 陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040

    CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar Micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040
    [18] 李东宸, 水鹏朗, 许述文. 块白化杂波抑制的海面漂浮小目标检测方法[J]. 西安电子科技大学学报:自然科学版, 2016, 43(6): 21–26. doi: 10.3969/j.issn.1001-2400.2016.06.004

    LI Dongchen, SHUI Penglang, and XU Shuwen. Floating small target detection in the sea clutter via block-whitened clutter suppression[J]. Journal of Xidian University, 2016, 43(6): 21–26. doi: 10.3969/j.issn.1001-2400.2016.06.004
    [19] XU Shuwen, ZHENG Jibin, PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505–1509. doi: 10.1109/LGRS.2018.2852560
    [20] CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. doi: 10.1109/TGRS.2014.2358456
    [21] 陈世超, 罗丰, 胡冲, 等. 基于多普勒谱非广延熵的海面目标检测方法[J]. 雷达学报, 2019, 8(3): 344–354. doi: 10.12000/JR19012

    CHEN Shichao, LUO Feng, HU Chong, et al. Small target detection in sea clutter background based on tsallis entropy of Doppler spectrum[J]. Journal of Radars, 2019, 8(3): 344–354. doi: 10.12000/JR19012
    [22] 李军伟. 双谱分析新方法及其工程应用研究[D]. [硕士论文], 郑州大学, 2006.

    LI Junwei. A new method of bispectral analysis and its engineering application[D]. [Master dissertation], Zhengzhou University, 2006.
    [23] TANG Li and JIANG Ting. Target identification based on diagonal slice of the complex bispectrum[C]. Proceedings of 2014 IEEE International Conference on Communiction Problem-solving, Beijing, China, 2014: 303–306. doi: 10.1109/ICCPS.2014.7062279.
    [24] ZHANG Xianda, SHI Yu, and BAO Zheng. A new feature vector using selected bispectra for signal classification with application in radar target recognition[J]. IEEE Transactions on Signal Processing, 2001, 49(9): 1875–1885. doi: 10.1109/78.942617
    [25] HERSELMAN P L, BAKER C J, and DE WIND H J. An analysis of X-band calibrated sea clutter and small boat reflectivity at medium-to-low grazing angles[J]. International Journal of Navigation and Observation, 2008, 2008: 347518. doi: 10.1155/2008/347518
    [26] HERSELMAN P L and BAKER C J. Analysis of calibrated sea clutter and boat reflectivity data at C- and X-band in south African coastal waters[C]. Proceedings of 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007. doi: 10.1049/cp:20070616.
    [27] 丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1755
  • HTML全文浏览量:  752
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-09-28
  • 网络出版日期:  2021-10-01
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回