高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析

董哲康 钱智凯 周广东 纪晓悦 齐冬莲 赖俊升

董哲康, 钱智凯, 周广东, 纪晓悦, 齐冬莲, 赖俊升. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376
引用本文: 董哲康, 钱智凯, 周广东, 纪晓悦, 齐冬莲, 赖俊升. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376
DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, JI Xiaoyue, QI Donglian, LAI Junsheng. Memory Circuit Design, Implementation and Analysis Based on Memristor Full-function Pavlov Associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376
Citation: DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, JI Xiaoyue, QI Donglian, LAI Junsheng. Memory Circuit Design, Implementation and Analysis Based on Memristor Full-function Pavlov Associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080-2092. doi: 10.11999/JEIT210376

基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析

doi: 10.11999/JEIT210376
基金项目: 国家自然科学基金(62001149),浙江省自然科学基金(LQ21F010009)
详细信息
    作者简介:

    董哲康:男,1989年生,副教授,研究方向为忆阻理论、基于忆阻神经形态系统

    钱智凯:男,1996年生,硕士生,研究方向为忆阻理论、基于忆阻神经形态系统

    周广东:男,1986年生,教授,研究方向为忆阻制备及其物理机制研究、基于忆阻神经形态系统

    纪晓悦:女,1993年生,博士生,研究方向为忆阻理论、基于忆阻器的神经形态系统

    齐冬莲:女,1973年生,教授,研究方向为忆阻器理论、基于忆阻器的非线性系统

    赖俊升:男,1991年生,助理教授,研究方向为非线性系统、神经形态系统

    通讯作者:

    纪晓悦 ji.xiaoyue@zju.edu.cn

  • 中图分类号: TN601; TP183

Memory Circuit Design, Implementation and Analysis Based on Memristor Full-function Pavlov Associative

Funds: The National Natural Science Foundation of China (62001149), Natural Science Foundation of Zhejiang Province (LQ21F010009)
  • 摘要: 联想记忆是一种描述生物学习和遗忘过程的重要机制,对构建神经形态计算系统和模拟类脑功能有重要的意义,设计并实现联想记忆电路成为人工神经网络领域内的研究热点。巴甫洛夫条件反射实验作为联想记忆的经典案例之一,其硬件电路的实现方案仍然存在电路设计复杂、功能不完善以及过程描述不清晰等问题。基于此,该文融合经典的条件反射理论和纳米科学技术,提出一种基于忆阻的全功能巴甫洛夫联想记忆电路。首先,基于水热合成法和磁控溅射法制备了Ag/TiOx nanobelt/Ti结构的忆阻器,通过电化学工作站、四探针测试台和透射电子显微镜联合完成相应的性能测试;接着,利用测试得到的电化学数据,构建了Ag/TiOx nanobelt/Ti忆阻器的数学模型和SPICE电路模型,并通过客观评价验证模型的精确度;进一步,基于提出的Ag/TiOx nanobelt/Ti忆阻器模型,设计了一种全功能巴甫洛夫联想记忆电路,通过电路描述和功能分析,论述了该电路能够正确模拟巴甫洛夫实验中2类学习过程和3类遗忘过程;最后,通过一系列计算机仿真和分析,验证了所提方案的正确性和有效性。
  • 图  1  Ag/TiOx nanobelt/Ti忆阻器的制备过程

    图  2  Ag/TiOx nanobelt/Ti忆阻器的性能测试

    图  3  Ag/TiOx nanobelt/Ti忆阻器建模

    图  4  基于忆阻的全功能巴甫洛夫联想记忆电路

    图  5  情况1(初始状态)的电路仿真结果

    图  6  情况2(L1)的电路仿真结果

    图  7  情况3(F1)的电路仿真结果

    图  8  情况4(L1)的电路仿真结果

    图  9  情况5(F2)的电路仿真结果

    图  10  情况6(L2)的电路仿真结果

    图  11  情况7(F3)的电路仿真结果

    表  1  巴甫洛夫联想记忆电路的对比信息汇总

    性能文献[7]文献[8,9,12,13]文献[10,11]文献[14]文献[15]文献[16]文献[17,18,19]本文工作
    实物支撑
    功能完备性一类学习
    无遗忘
    一类学习
    一类遗忘
    一类学习
    一类遗忘
    一类学习
    无遗忘
    两类学习
    一类遗忘
    两类学习
    两类遗忘
    两类学习
    三类遗忘
    两类学习
    三类遗忘
    电路复杂度简单简单简单中等复杂中等复杂中等
    生物特性
    下载: 导出CSV

    表  2  Ag/TiOx nanobelt/Ti忆阻器SPICE模型子电路描述

    * Ag/TiOx nanobelt/Ti memristor
    .SUBCKT IJBCMEM Plus Minus PARAMS:
    +kL=-6 AlphaL=2 aL=-1 wL=2 a1=0.22 b1=-0.38 c1=0.166 d1=9.96E-05 kH=3E-3 AlphaH=4 aH=-1 wH=1
    +a2=0.22 b2=-10 b2=-10 c2=8.15 d2=3E-08 Vth1=0 Vth2=0
    ****************Differential equation mode***************
    Gx 0 x value={F(V(x),V(Plus,Minus),aL,aH,wL,wH,kL,kH,AlphaL,AlphaH)}
    Cx x 0 1 IC={0}
    Raux x 0 1T
    ***********************Ohms law***********************
    Gm Plus Minus value={IVRel(V(x),V(Plus,Minus),a1,a2,b1,b2,c1,c2,d1,d2)}
    ***********************Functions***********************
    .func f1(x,v,kL,AlphaL,aL,wL)={kL*v^AlphaL*exp(-exp(aL*x+wL))}
    .func f2(x,v,kH,AlphaH,aH,wH)={kH*v^AlphaH*exp(-exp(aH*x+wH))}
    .func f3(x,v,a1,b1,c1,d1)={a1*x*exp(b1*x^3+c1)*sinh(d1*(v)^3)}
    .func f4(x,v,a2,b2,c2,d2)={a2*x*exp(b2*x^3+c2)*sinh(d2*(v)^3)}
    .func F(x,v,aL,aH,wL,wH,kL,kH,AlphaL,AlphaH)={if(v<Vth1,f1(x,v,kL,AlphaL,aL,wL),
    +if(v>Vth2,f2(x,v,kH,AlphaH,aH,wH),0))}
    .func IVRel(x,v,a1,a2,b1,b2,c1,c2,d1,d2)={if(v<Vth1,f3(x,v,a1,b1,c1,d1),if(v>Vth2,f4(x,v,a2,b2,c2,d2),0))}
    ENDS Ag/TiOx nanobelt/Ti memristor
    下载: 导出CSV

    表  3  巴甫洛夫联想记忆信息汇总

    学习过程遗忘过程
        /        /        /
      
    下载: 导出CSV
  • [1] ZYARAH A M, GOMEZ K, and KUDITHIPUDI D. Neuromorphic system for spatial and temporal information processing[J]. IEEE Transactions on Computers, 2020, 69(8): 1099–1112.
    [2] RYU J H, KIM B, HUSSAIN F, et al. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering[J]. Applied Surface Science, 2021, 544: 148796. doi: 10.1016/j.apsusc.2020.148796
    [3] 董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868

    DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868
    [4] DONG Zhekang, LAI C S, ZHANG Zhaowei, et al. Neuromorphic extreme learning machines with bimodal memristive synapses[J]. Neurocomputing, 2021, 453: 38–49. doi: 10.1016/j.neucom.2021.04.049
    [5] DONG Zhekang, QI Donglian, HE Yufei, et al. Easily cascaded memristor-CMOS hybrid circuit for high-efficiency boolean logic implementation[J]. International Journal of Bifurcation and Chaos, 2018, 28(12): 1850149. doi: 10.1142/S0218127418501493
    [6] YANG Zijia and WANG Xiaoping. Memristor-based BAM circuit implementation for image associative memory and filling-in[J]. Neural Computing and Applications, 2021, 33(13): 7929–7942. doi: 10.1007/s00521-020-05538-7
    [7] ZIEGLER M, SONI R, PATELCZYK T, et al. An electronic version of Pavlov’s dog[J]. Advanced Functional Materials, 2012, 22(13): 2744–2749. doi: 10.1002/adfm.201200244
    [8] BICHLER O, ZHAO W, ALIBART F, et al. Pavlov’s dog associative learning demonstrated on synaptic-like organic transistors[J]. Neural Computation, 2013, 25(2): 549–566. doi: 10.1162/NECO_a_00377
    [9] HU S G, LIU Y, LIU Z, et al. Synaptic long-term potentiation realized in Pavlov’s dog model based on a NiOx-based memristor[J]. Journal of Applied Physics, 2014, 116(21): 214502. doi: 10.1063/1.4902515
    [10] LI Yi, XU Lei, ZHONG Yingpeng, et al. Associative learning with temporal contiguity in a memristive circuit for large-scale neuromorphic networks[J]. Advanced Electronic Materials, 2015, 1(8): 1500125. doi: 10.1002/aelm.201500125
    [11] YU Fei, ZHU Liqiang, XIAO Hui, et al. Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and Pavlovian associative learning activities[J]. Advanced Functional Materials, 2018, 28(44): 1804025. doi: 10.1002/adfm.201804025
    [12] 徐威, 王钰琪, 李岳峰, 等. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用[J]. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023

    XU Wei, WANG Yuqi, LI Yuefeng, et al. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning[J]. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [13] PEI Yifei, ZHOU Zhenyu, CHEN A P, et al. A carbon-based memristor design for associative learning activities and neuromorphic computing[J]. Nanoscale, 2020, 12(25): 13531–13539. doi: 10.1039/D0NR02894K
    [14] PERSHIN Y V and DI VENTRA M. Experimental demonstration of associative memory with memristive neural networks[J]. Neural Networks, 2010, 23(7): 881–886. doi: 10.1016/j.neunet.2010.05.001
    [15] CHEN Ling, LI Chuandong, WANG Xin, et al. Associate learning and correcting in a memristive neural network[J]. Neural Computing and Applications, 2013, 22(6): 1071–1076. doi: 10.1007/s00521-012-0868-7
    [16] WANG Lidan, LI Huifang, DUAN Shukai, et al. Pavlov associative memory in a memristive neural network and its circuit implementation[J]. Neurocomputing, 2016, 171: 23–29. doi: 10.1016/j.neucom.2015.05.078
    [17] YANG Le, ZENG Zhigang, and WEN Shiping. A full-function Pavlov associative memory implementation with memristance changing circuit[J]. Neurocomputing, 2018, 272: 513–519. doi: 10.1016/j.neucom.2017.07.020
    [18] SHANG Meijia and WANG Xiaoping. A memristor-based circuit design for generalization and differentiation on Pavlov associative memory[J]. Neurocomputing, 2020, 389: 18–26. doi: 10.1016/j.neucom.2019.12.106
    [19] SUN Junwei, HAN Juntao, LIU Peng, et al. Memristor-based neural network circuit of Pavlov associative memory with dual mode switching[J]. AEU-International Journal of Electronics and Communications, 2021, 129: 153552. doi: 10.1016/j.aeue.2020.153552
    [20] LO H Y, YANG C Y, HUANG G M, et al. Observing topotactic phase transformation and resistive switching behaviors in low power SrCoOx memristor[J]. Nano Energy, 2020, 72: 104683. doi: 10.1016/j.nanoen.2020.104683
    [21] ZHOU Guangdong, REN Zhijun, SUN Bai, et al. Capacitive effect: An original of the resistive switching memory[J]. Nano Energy, 2020, 68: 104386. doi: 10.1016/j.nanoen.2019.104386
    [22] ZHOU Guangdong, REN Zhijun, WANG Lidan, et al. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device[J]. Nano Energy, 2019, 63: 103793. doi: 10.1016/j.nanoen.2019.05.079
    [23] YU L S, LIU Q Z, XING Q J, et al. The role of the tunneling component in the current-voltage characteristics of metal-GaN Schottky diodes[J]. Journal of Applied Physics, 1998, 84(4): 2099–2104. doi: 10.1063/1.368270
    [24] AFIFI A, AYATOLLAHI A, and RAISSI F. STDP implementation using memristive nanodevice in CMOS-Nano neuromorphic networks[J]. IEICE Electronics Express, 2009, 6(3): 148–153. doi: 10.1587/elex.6.148
    [25] LI Junrui, DONG Zhekang, LUO Li, et al. A novel versatile window function for memristor model with application in spiking neural network[J]. Neurocomputing, 2020, 405: 239–246. doi: 10.1016/j.neucom.2020.04.111
    [26] HUTTER F, HOOS H H, and LEYTON-BROWN K. Sequential model-based optimization for general algorithm configuration[C]. The 5th International Conference on Learning and Intelligent Optimization, Rome, Italy, 2011: 507–523.
    [27] LIN G F and CHEN L H. A non-linear rainfall-runoff model using radial basis function network[J]. Journal of Hydrology, 2004, 289(1/4): 1–8.
    [28] RESCORLA R A. Pavlovian conditioning: It’s not what you think it is[J]. American Psychologist, 1988, 43(3): 151–160. doi: 10.1037/0003-066X.43.3.151
    [29] RESCORLA R A. Behavioral studies of Pavlovian conditioning[J]. Annual Review of Neuroscience, 1988, 11: 329–352. doi: 10.1146/annurev.ne.11.030188.001553
    [30] ALSAEED N H. Wish you were here: A psychological analysis using Atkinson-Shiffrin memory mode[J]. Journal of Literature and Art Studies, 2017, 6(5): 521–527.
    [31] BARKER R W J and HART B L. Precision absolute-value circuit technique[J]. International Journal of Electronics, 1989, 66(3): 445–448. doi: 10.1080/00207218908925401
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  3139
  • HTML全文浏览量:  949
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-08-26
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回