高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于显著轮廓特征的SAR图像轮廓匹配新方法

马晓蕊 郑昌文 梁毅

马晓蕊, 郑昌文, 梁毅. 基于显著轮廓特征的SAR图像轮廓匹配新方法[J]. 电子与信息学报, 2021, 43(11): 3174-3184. doi: 10.11999/JEIT210368
引用本文: 马晓蕊, 郑昌文, 梁毅. 基于显著轮廓特征的SAR图像轮廓匹配新方法[J]. 电子与信息学报, 2021, 43(11): 3174-3184. doi: 10.11999/JEIT210368
Xiaorui MA, Changwen ZHENG, Yi LIANG. Contour Matching Method for SAR Images Based on Salient Contour Features[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3174-3184. doi: 10.11999/JEIT210368
Citation: Xiaorui MA, Changwen ZHENG, Yi LIANG. Contour Matching Method for SAR Images Based on Salient Contour Features[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3174-3184. doi: 10.11999/JEIT210368

基于显著轮廓特征的SAR图像轮廓匹配新方法

doi: 10.11999/JEIT210368
基金项目: 国家自然科学基金(61971326)
详细信息
    作者简介:

    马晓蕊:女,1981年生,博士生,研究方向为图像处理与模式识别、图像智能检测

    郑昌文:男,1969年生,研究员,研究方向为图像处理、大数据分析以及系统仿真、智能软件工程

    梁毅:男,1981年生,副教授,研究方向为雷达成像、精确制导、图像匹配融合、实时信号处理

    通讯作者:

    马晓蕊 xiaorui.ma@ia.ac.cn

  • 中图分类号: TN957.52

Contour Matching Method for SAR Images Based on Salient Contour Features

Funds: The National Natural Science Foundation of China (61971326)
  • 摘要: 在以星载SAR图像作为基准图、机载/弹载SAR图像作为实时图的匹配导航和精确制导研究中,传统基于点特征的匹配方法存在特征点数目过多, 误匹配率较高,容易受噪声及灰度变化影响等问题。该文提出一种基于显著轮廓特征的SAR图像“由粗到精”的匹配新方法。该方法在对SAR图像进行预处理的基础上,采用改进的模糊C均值聚类(FCM)的图像分割方法来提取闭合轮廓特征;采用归一化轮廓中心距离描述符进行双向匹配,获得强鲁棒性的粗匹配轮廓对;在粗匹配轮廓上采用改进的局部二值模式(LBP)算子得到精匹配结果。试验结果表明,该方法在图像旋转、空间变化以及噪声干扰较大的情况下,具有精确性高、鲁棒性强的优势,适宜遥感SAR图像匹配。
  • 图  1  图像聚类与轮廓提取仿真结果

    图  2  原始LBP阈值化示意图

    图  3  LBP旋转不变模式

    图  4  改进LBP算子精匹配模型图

    图  5  算法整体流程图

    图  6  图像轮廓提取结果

    图  7  SAR图像旋转60°时本文算法特征匹配结果

    图  8  旋转角度与正确匹配率关系示意图

    图  9  SAR图像缩放比为0.7时本文算法特征匹配结果

    图  10  尺度因子与匹配正确率关系示意图

    图  11  SAR图像缩放缩放比例0.7、旋转90°时本文算法特征匹配结果

    图  12  尺度因子与匹配正确率关系示意图

    图  13  抗灰度差异性仿真结果

    图  14  噪声方差与匹配正确率关系示意图

    图  15  4种算法匹配结果

    图  16  4种算法匹配性能分析图

    表  1  匹配方法定量比较分析

    方法RMSE时间(ms)匹配数正确匹配数正确率(%)
    SURF算法6.952218262180.77
    SIFT-OCT算法6.914287131184.62
    SAR-SIFT算法5.071310191789.47
    本文所提方法4.785210111090.91
    下载: 导出CSV
  • [1] WU Yue, LIU Junwei, ZHU Chenzhuo, et al. Computational intelligence in remote sensing image registration: A survey[J]. International Journal of Automation and Computing, 2021, 18(1): 1–17. doi: 10.1007/s11633-020-1248-x
    [2] JIANG Qian, LIU Yadong, YAN Yingjie, et al. A contour angle orientation for power equipment infrared and visible image registration[J]. IEEE Transactions on Power Delivery, 2021, 36(4): 2559–2569. doi: 10.1109/TPWRD.2020.3011962.
    [3] LI Hui, MANJUNATH B S, and MITRA S K. A contour-based approach to multisensor image registration[J]. IEEE Transactions on Image Processing, 1995, 4(3): 320–334. doi: 10.1109/83.366480
    [4] ÁLVAREZ N A, SANCHIZ J M, BADENAS J, et al. Contour-based image registration using mutual information[C]. Second Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal, 2005: 227–234.
    [5] CHEN Fulong, ZHANG Hong, and WANG Chao. A Novel feature matching method in airborne SAR image registration[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, South Korea, 2005: 4722–4724.
    [6] ZHANG Hong, WANG Chao, TANG Yixian, et al. A new image registration method for multi-frequency airborne high-resolution SAR images[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 167–169.
    [7] XIE Kun, CHEN Jinlong, and YANG Minghao. A remote sensing image registration method based on multi-features[C]. 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), Xiamen, China, 2019: 134–138.
    [8] 孙兴龙, 韩广良, 郭立红, 等. 采用轮廓特征匹配的红外-可见光视频自动配准[J]. 光学精密工程, 2020, 28(5): 1140–1151.

    SUN Xinglong, HAN Guangliang, GUO Lihong, et al. Infrared-visible video automatic registration with contour feature matching[J]. Optics and Precision Engineering, 2020, 28(5): 1140–1151.
    [9] SCHWIND P, SURI S, REINARTZ P, et al. Applicability of the SIFT operator to geometric SAR image registration[J]. International Journal of Remote Sensing, 2010, 31(8): 1959–1980. doi: 10.1080/01431160902927622
    [10] BAY H, TUYTELAARS T, and VAN GOOL L. SURF: Speeded up robust features[C]. Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 2006: 404–417.
    [11] DELLINGER F, DELON J, GOUSSEAU Y, et al. SAR-SIFT: A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 453–466. doi: 10.1109/TGRS.2014.2323552
    [12] MATAS J, GALAMBOS C, and KITTLER J. Robust detection of lines using the progressive probabilistic Hough transform[J]. Computer Vision and Image Understanding, 2000, 78(1): 119–137. doi: 10.1006/cviu.1999.0831
    [13] 包建强, 张献州, 李圆, 等. 多种空间直线拟合方法应用分析[J]. 测绘科学, 2020, 45(5): 132–139, 151.

    BAO Jianqiang, ZHANG Xianzhou, LI Yuan, et al. Applied analysis of various space linear fitting methods[J]. Science of Surveying and Mapping, 2020, 45(5): 132–139, 151.
    [14] 吴静, 周先春, 徐新菊, 等. 三维块匹配波域调和滤波图像去噪[J]. 计算机科学, 2020, 47(7): 130–134.

    WU Jing, ZHOU Xianchun, XU Xinju, et al. Image denoising by mixing 3D block matching with harmonic filtering in transform domain[J]. Computer Science, 2020, 47(7): 130–134.
    [15] OLVERA R D P, ZERON E M, ORTEGA J C P, et al. A feature extraction using SIFT with a preprocessing by adding CLAHE algorithm to enhance image histograms[C]. 2014 International Conference on Mechatronics, Electronics and Automotive Engineering, Cuernavaca, Mexico, 2014: 20–25.
    [16] SHANG Ronghua, LIU Mengmeng, LIN Junkai, et al. SAR image segmentation based on constrained smoothing and hierarchical label correction[J]. IEEE Transactions on Geoscience and Remote Sensing, To be published. doi: 10.1109/TGRS.2021.3076446
    [17] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679–698. doi: 10.1109/TPAMI.1986.4767851
    [18] RAHMAN T and ISLAM M S. Image segmentation based on fuzzy C means clustering algorithm and morphological reconstruction[C]. 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), Dhaka, Bangladesh, 2021: 259–263.
    [19] 李彦, 赵其峰, 闫河, 等. Canny算子在PCBA目标边缘提取中的优化应用[J]. 光学精密工程, 2020, 28(9): 2096–2102. doi: 10.37188/OPE.20202809.2096

    LI Yan, ZHAO Qifeng, YAN He, et al. Optimized application of Canny operator in PCBA target edge extraction[J]. Optics and Precision Engineering, 2020, 28(9): 2096–2102. doi: 10.37188/OPE.20202809.2096
    [20] HU Yipeng, ALEXANDER D C, and MERTZANIDOU T. Image Registration[M]. Cham: Springer, 2020: 1–8.
    [21] HOU Kang, LÜ Xuefei, and ZHANG Wenhui. An adaptive fusion panoramic image mosaic algorithm based on circular LBP feature and HSV color system[C]. 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 2020: 94–100.
    [22] 魏祥坡, 余旭初, 张鹏强, 等. 联合局部二值模式的CNN高光谱图像分类[J]. 遥感学报, 2020, 24(8): 1000–1009.

    WEI Xiangpo, YU Xuchu, ZHANG Pengqiang, et al. CNN with local binary patterns for hyperspectral images classification[J]. Journal of Remote Sensing, 2020, 24(8): 1000–1009.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  1016
  • HTML全文浏览量:  1015
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-08-13
  • 网络出版日期:  2021-08-24
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回