高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分段线性忆阻系统的簇发振荡及其机理分析

马铭磷 陈亮 李志军 王梦蛟 邱志成

马铭磷, 陈亮, 李志军, 王梦蛟, 邱志成. 分段线性忆阻系统的簇发振荡及其机理分析[J]. 电子与信息学报, 2022, 44(7): 2602-2610. doi: 10.11999/JEIT210337
引用本文: 马铭磷, 陈亮, 李志军, 王梦蛟, 邱志成. 分段线性忆阻系统的簇发振荡及其机理分析[J]. 电子与信息学报, 2022, 44(7): 2602-2610. doi: 10.11999/JEIT210337
MA Minglin, CHEN Liang, LI Zhijun, WANG Mengjiao, QIU Zhicheng. Bursting Oscillations and the Formation Mechanism in a Piecewise Linear Memristive System[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2602-2610. doi: 10.11999/JEIT210337
Citation: MA Minglin, CHEN Liang, LI Zhijun, WANG Mengjiao, QIU Zhicheng. Bursting Oscillations and the Formation Mechanism in a Piecewise Linear Memristive System[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2602-2610. doi: 10.11999/JEIT210337

分段线性忆阻系统的簇发振荡及其机理分析

doi: 10.11999/JEIT210337
基金项目: 国家重点研发计划(2018AAA0103300),国家自然科学基金(62071411)
详细信息
    作者简介:

    马铭磷:男,1978年生,副教授、硕士生导师,研究方向为混沌、集成电路设计

    陈亮:男,1997年生,硕士生,研究方向为基于忆阻系统的非线性动力学及应用

    李志军:男,1973年生,教授、硕士生导师,研究方向为非线性电路与系统,数模混合集成电路

    王梦蛟:男,1983年生,副教授、硕士生导师,研究方向为非线性电路与系统

    通讯作者:

    马铭磷 minglin_ma@xtu.edu.cn

  • 中图分类号: TN601

Bursting Oscillations and the Formation Mechanism in a Piecewise Linear Memristive System

Funds: The National Key Research and Development Project (2018AAA0103300), The National Natural Science Foundation of China (62071411)
  • 摘要: 为了研究分段线性忆阻系统的簇发振荡及其形成机理,该文在一非自治系统中引入分段线性忆阻器模型与慢变化的周期激励项,建立了一种两时间尺度的4D分段线性忆阻系统。由于分段线性忆阻器模型的引入,系统被非光滑分界面分成不同的子系统。相应子系统控制的名义平衡轨迹的稳定性与非光滑分界面均会影响系统的簇发现象,导致轨迹在非光滑分界面处的突然跃迁与非光滑分岔的产生,从而展现出两种不同机理的簇发模式。利用微分包含定理对分岔机理进行分析,并借助时序图、转换相图等,通过数值仿真与Multisim电路仿真验证了理论分析的正确性,该文对分段线性忆阻系统的动力学行为及应用研究具有重要意义。
  • 图  1  分段线性忆阻器的特性图

    图  2  (w, z)平面示意图

    图  3  α=4时(w, z)平面相图

    图  4  (x, z)平面相图

    图  5  α=4时变量z的时序图及局部放大图

    图  6  α=4时(w, z)平面相图与NEOs叠加图

    图  7  α=7时(w, z)平面相图

    图  8  α=7时变量z的时序图及局部放大图

    图  9  (x, z)平面相图

    图  10  α=7时(w , z)平面相图与NEOs叠加图

    图  11  分段线性忆阻系统簇发振荡的电路原理图

    图  12  α=7时Multisim电路仿真图

    图  13  α=4时Multisim电路仿真图

  • [1] ZHANG Zhengdi, LI Yanyan, and BI Qinsheng. Routes to bursting in a periodically driven oscillator[J]. Physics Letters A, 2013, 377(13): 975–980. doi: 10.1016/j.physleta.2013.02.022
    [2] LIEPELT S, FREUND J A, SCHIMANSKY-GEIER L, et al. Information processing in noisy burster models of sensory neurons[J]. Journal of Theoretical Biology, 2005, 237(1): 30–40. doi: 10.1016/j.jtbi.2005.03.029
    [3] MACDONALD J H G and LAROSE G L. Two-degree-of-freedom inclined cable galloping—part 1: General formulation and solution for perfectly tuned system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(3): 291–307. doi: 10.1016/j.jweia.2007.07.002
    [4] PROSKURKIN I S and VANAG V K. New type of excitatory pulse coupling of chemical oscillators via inhibitor[J]. Physical Chemistry Chemical Physics, 2015, 17(27): 17906–17913. doi: 10.1039/C5CP02098K
    [5] WU Huagan, BAO Bocheng, LIU Zhong, et al. Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator[J]. Nonlinear Dynamics, 2016, 83(1): 893–903. doi: 10.1007/s11071-015-2375-8
    [6] 韩修静, 江波, 毕勤胜. 快慢型超混沌Lorenz系统分析[J]. 物理学报, 2009, 58(9): 6006–6015. doi: 10.3321/j.issn:1000-3290.2009.09.020

    HAN Xiujing, JIANG Bo, and BI Qinsheng. Analysis of the fast-slow hyperchaotic Lorenz system[J]. Acta Physica Sinica, 2009, 58(9): 6006–6015. doi: 10.3321/j.issn:1000-3290.2009.09.020
    [7] BI Qingsheng, CHEN Xiaoke, KURTHS J, et al. Nonlinear behaviors as well as the mechanism in a piecewise-linear dynamical system with two time scales[J]. Nonlinear Dynamics, 2016, 85(4): 2233–2245. doi: 10.1007/s11071-016-2825-y
    [8] RINZEL J. Bursting oscillations in an excitable membrane model[M]. SLEEMAN B D and JARVIS R J. Ordinary and Partial Differential Equations. Heidelberg: Springer, 1985: 304–316.
    [9] BAO Bocheng, YANG Qinfeng, ZHU Lei, et al. Chaotic bursting dynamics and coexisting multistable firing patterns in 3D autonomous Morris-Lecar model and microcontroller-based validations[J]. International Journal of Bifurcation and Chaos, 2019, 29(10): 1950134. doi: 10.1142/S0218127419501347
    [10] PROSKURKIN I S and VANAG V K. Dynamics of a 1D array of inhibitory coupled chemical oscillators in microdroplets with global negative feedback[J]. Physical Chemistry Chemical Physics, 2018, 20(23): 16126–16137. doi: 10.1039/C8CP02283F
    [11] HAN Xiujing, YU Yue, and ZHANG Chun. A novel route to chaotic bursting in the parametrically driven Lorenz system[J]. Nonlinear Dynamics, 2017, 88(4): 2889–2897. doi: 10.1007/s11071-017-3418-0
    [12] MA Xindong and CAO Shuqian. Pitchfork-bifurcation-delay-induced bursting patterns with complex structures in a parametrically driven Jerk circuit system[J]. Journal of Physics A: Mathematical and Theoretical, 2018, 51(33): 335101. doi: 10.1088/1751-8121/aace0d
    [13] HAN Xiujing, ZHANG Yi, BI Qingsheng, et al. Two novel bursting patterns in the Duffing system with multiple-frequency slow parametric excitations[J]. Chaos, 2018, 28(4): 043111. doi: 10.1063/1.5012519
    [14] WEI Mengke, JIANG Wenan, MA Xindong, et al. Compound bursting dynamics in a parametrically and externally excited mechanical system[J]. Chaos, Solitons & Fractals, 2021, 143: 110605. doi: 10.1016/j.chaos.2020.110605
    [15] CHUA L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507–519. doi: 10.1109/TCT.1971.1083337
    [16] STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80–83. doi: 10.1038/nature06932
    [17] 李志军, 曾以成. 基于文氏振荡器的忆阻混沌电路[J]. 电子与信息学报, 2014, 36(1): 88–93. doi: 10.3724/SP.J.1146.2013.00332

    LI Zhijun and ZENG Yicheng. A memristor chaotic circuit based on Wien-bridge oscillator[J]. Journal of Electronics &Information Technology, 2014, 36(1): 88–93. doi: 10.3724/SP.J.1146.2013.00332
    [18] BAO Bocheng, LIU Zhong, and XU Jianping. Transient chaos in smooth memristor oscillator[J]. Chinese Physics B, 2010, 19(3): 030510. doi: 10.1088/1674-1056/19/3/030510
    [19] CHEN Mo, QI Jianwei, XU Quan, et al. Quasi-period, periodic bursting and bifurcations in memristor-based FitzHugh-Nagumo circuit[J]. AEU-International Journal of Electronics and Communications, 2019, 110: 152840. doi: 10.1016/j.aeue.2019.152840
    [20] LIN Hairong, WANG Chunhua, SUN Yichuang, et al. Firing multistability in a locally active memristive neuron model[J]. Nonlinear Dynamics, 2020, 100(4): 3667–3683. doi: 10.1007/s11071-020-05687-3
    [21] 王春华, 蔺海荣, 孙晶如, 等. 基于忆阻器的混沌、存储器及神经网络电路研究进展[J]. 电子与信息学报, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821

    WANG Chunhua, LIN Hairong, SUN Jingru, et al. Research progress on chaos, memory and neural network circuits based on memristor[J]. Journal of Electronics &Information Technology, 2020, 42(4): 795–810. doi: 10.11999/JEIT190821
    [22] WEN Zihao, LI Zhijun, and LI Xiang. Bursting dynamics in parametrically driven memristive Jerk system[J]. Chinese Journal of Physics, 2020, 66: 327–334. doi: 10.1016/j.cjph.2020.04.009
    [23] WANG Chunhua, LIU Xiaoming, and XIA Hu. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system[J]. Chaos, 2017, 27(3): 033114. doi: 10.1063/1.4979039
    [24] PONCE E, AMADOR A, and ROS J. A multiple focus-center-cycle bifurcation in 4D discontinuous piecewise linear memristor oscillators[J]. Nonlinear Dynamics, 2018, 94(4): 3011–3028. doi: 10.1007/s11071-018-4541-2
    [25] AMADOR A, FREIRE E, PONCE E, et al. On discontinuous piecewise linear models for memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2017, 27(6): 1730022. doi: 10.1142/S0218127417300221
    [26] 张正娣, 刘亚楠, 李静, 等. 分段Filippov系统的簇发振荡及擦边运动机理[J]. 物理学报, 2018, 67(11): 110501. doi: 10.7498/aps.67.20172421

    ZHANG Zhengdi, LIU Yanan, LI Jing, et al. Bursting oscillations and mechanism of sliding movement in piecewise Filippov system[J]. Acta Physica Sinica, 2018, 67(11): 110501. doi: 10.7498/aps.67.20172421
    [27] ITOH M and CHUA L O. Memristor oscillators[J]. International Journal of Bifurcation and Chaos, 2008, 18(11): 3183–3206. doi: 10.1142/S0218127408022354
    [28] LEINE R I and VAN CAMPEN D H. Bifurcation phenomena in non-smooth dynamical systems[J]. European Journal of Mechanics-A/Solids, 2006, 25(4): 595–616. doi: 10.1016/j.euromechsol.2006.04.004
  • 加载中
图(13)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  505
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-21
  • 修回日期:  2021-07-17
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回