高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双曲图注意力网络的知识图谱链路预测方法

吴铮 陈鸿昶 张建朋

吴铮, 陈鸿昶, 张建朋. 基于双曲图注意力网络的知识图谱链路预测方法[J]. 电子与信息学报, 2022, 44(6): 2184-2194. doi: 10.11999/JEIT210321
引用本文: 吴铮, 陈鸿昶, 张建朋. 基于双曲图注意力网络的知识图谱链路预测方法[J]. 电子与信息学报, 2022, 44(6): 2184-2194. doi: 10.11999/JEIT210321
WU Zheng, CHEN Hongchang, ZHANG Jianpeng. Link Prediction in Knowledge Graphs Based on Hyperbolic Graph Attention Networks[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2184-2194. doi: 10.11999/JEIT210321
Citation: WU Zheng, CHEN Hongchang, ZHANG Jianpeng. Link Prediction in Knowledge Graphs Based on Hyperbolic Graph Attention Networks[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2184-2194. doi: 10.11999/JEIT210321

基于双曲图注意力网络的知识图谱链路预测方法

doi: 10.11999/JEIT210321
基金项目: 国家自然科学基金青年基金(62002384),郑州市协同创新重大专项(162/32410218),中国博士后科学基金面上项目(47698)
详细信息
    作者简介:

    吴铮:男,1992年生,博士生,研究方向为图神经网络、网络大数据分析

    陈鸿昶:男,1964年生,教授,研究方向为智能信息处理、人工智能

    张建朋:男,1988年生,助理研究员,研究方向为数据挖掘、社会网络分析

    通讯作者:

    吴铮 wzxuexizhuanyong@163.com

  • 中图分类号: TP181

Link Prediction in Knowledge Graphs Based on Hyperbolic Graph Attention Networks

Funds: The National Natural Science Foundation for Young Scholars (62002384), The Collaborative Innovation Program of Zhengzhou (162/32410218), The General Program of China Postdoctoral Science Foundation (47698)
  • 摘要: 现有的大多数知识表示学习模型孤立地看待每个知识三元组,未能发现和利用实体周围邻域特征信息,并且将树状层级结构的知识图谱嵌入到欧式空间,会带来嵌入式向量高度失真的问题。为解决上述问题,该文提出了一种基于双曲图注意力网络的知识图谱链路预测方法(HyGAT-LP)。首先将知识图谱嵌入到负常数曲率的双曲空间中,从而更契合知识图谱的树状层级结构;然后在所给实体领域内基于实体和关系两种层面的注意力机制聚合邻域特征信息,将实体嵌入到低维的双曲空间;最后利用得分函数计算每个三元组的得分值,并以此作为判定该三元组成立的依据完成知识图谱上的链路预测任务。实验结果表明,与基准模型相比,所提方法可显著提高知识图谱链路预测性能。
  • 图  1  欧式正切平面空间和双曲空间之间映射关系示意图

    图  2  HyGAT-LP模型框架图

    图  3  WN18RR数据集上各类关系MRR指标对比图

    图  4  实例三元组尾实体预测排名对比图

    表  1  FB15k-237数据集和WN18RR数据集统计量信息

    数据集$ \left| {\mathbf{V}} \right| $$ \left| {\mathbf{R}} \right| $三元组数$ \rho $
    训练集$ {{\mathbf{E}}_{{\text{Train}}}} $验证集$ {{\mathbf{E}}_{{\text{Valid}}}} $测试集$ {{\mathbf{E}}_{{\text{Test}}}} $总三元组数$ {\mathbf{E}} $
    FB15k-2371454123727211517535204663101161308.5
    WN18RR40943118683530343134930038454.8
    下载: 导出CSV

    表  2  FB15k-237数据集和WN18RR数据集上知识图谱链路预测结果

    流形模型FB15k-237WN18RR
    MRRHits@1Hits@3Hits@10MRRHits@1Hits@3Hits@10
    $ \mathbb{R} $TransE0.2940.1860.3210.465 0.2260.4270.4410.532
    DistMult0.2410.1550.2630.4190.4440.4120.4700.504
    ConvE0.3250.2370.3560.5010.4560.4190.4700.531
    ConvKB0.2890.1980.3240.4710.2650.0580.4450.558
    MuRE0.3360.2450.3700.5210.4750.4360.4870.554
    TuckER0.3580.2660.3940.5440.4710.4430.4820.526
    RGHAT0.5220.4620.5460.6310.4830.4250.4990.588
    $ \mathbb{C} $ComplEx0.2470.1580.2750.4280.4490.4090.4690.530
    RotatE0.3380.2410.3750.5330.4760.4280.4920.571
    $ \mathbb{B} $MuRP0.3350.2430.3670.5180.4810.4400.4950.566
    ATTH0.3840.2520.3840.5400.4860.4430.4980.573
    HyGAT-LP0.5290.4670.5660.6500.5210.4410.5110.619
    下载: 导出CSV

    表  3  在WN18RR数据集中每类关系的统计量信息

    关系名简记总三元组数Khs$ {\xi _{\text{G}}} $
    hypernymHY372211.00–2.46
    has_partHP51421.00–1.43
    member_meronymMM79281.00–2.90
    synset_domain_topic_ofSDTO33350.99–0.69
    instance_hypernymIH31501.00–0.82
    member_of_domain_regionMODR9831.00–0.78
    member_of_domain_usageMODU6751.00–0.74
    also_seeAS13960.36–2.09
    derivationally_related_formDRF318670.04–3.84
    similar_toST860–1.00
    verb_groupVG12200–0.50
    下载: 导出CSV

    表  4  预测排名前10尾实体情况

    (european_union,member_meronym,?)(geology,derivationally_related_form,?)
    排序MuREMuRPHyGAT-LPMuREMuRPHyGAT-LP
    1englandnowaybulgariageologistgeologistgeologist
    2polandbulgariadenmarkgivescientistpaleontologist
    3scotlanddenmarkeuropepsychologistanatomistdoctor
    4switzerlandswitzerlandnowayexplorermeteorologistscientist
    5denmarkpolandicelandreligionistfilmbiologist
    6nowayicelandbelarustheologianbiologistgeophysicist
    7bulgariascotlandswitzerlandophthalmologistgeomorphologicgeomorphologic
    8united_statescroatiahungaryphilosopherpaleontologistphilosopher
    9europebelarusirelanddiagnosticianchronologizephysicist
    10turkeyunited_statesczechoslovakiaspecialistgeophysicistmusician
    下载: 导出CSV
  • [1] 王昊奋, 漆桂林, 陈华钧. 知识图谱: 方法、实践与应用[M]. 北京: 电子工业出版社, 2019: 1–3.

    WANG Haofen, QI Guilin, and CHEN Huajun. Knowledge Graph[M]. Beijing: Publishing House of Electronics History, 2019: 1–3.
    [2] REINANDA R, MEIJ E, and DE RIJKE M. Knowledge graphs: An information retrieval perspective[J]. Foundations and Trends® in Information Retrieval, 2020, 14(4): 289–444. doi: 10.1561/1500000063
    [3] 张崇宇. 基于知识图谱的自动问答系统的应用研究与实现[D]. [硕士论文], 北京邮电大学, 2019.

    ZHANG Chongyu. Application research and implementation of automatic question answering system based on knowledge graph[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2019.
    [4] 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学:信息科学, 2020, 50(7): 937–956. doi: 10.1360/SSI-2019-0274

    QIN Chuan, ZHU Hengshu, ZHUANG Fuzhen, et al. A survey on knowledge graph-based recommender systems[J]. Scientia Sinica Informationis, 2020, 50(7): 937–956. doi: 10.1360/SSI-2019-0274
    [5] BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: Going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18–42. doi: 10.1109/MSP.2017.2693418
    [6] WANG Quan, MAO Zhendong, WANG Bin, et al. Knowledge graph embedding: A survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724–2743. doi: 10.1109/TKDE.2017.2754499
    [7] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating Embeddings for modeling multi-relational data[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, USA, 2013: 2787–2795.
    [8] SUN Zhiqing, DENG Zhihong, NIE Jianyun, et al. RotatE: Knowledge graph embedding by relational rotation in complex space[EB/OL]. https://arxiv.org/abs/1902.10197, 2019.
    [9] NICKEL M, TRESP V, and KRIEGEL H. A three-way model for collective learning on multi-relational data[C]. Proceedings of the 28th International Conference on Machine Learning (ICML), Bellevue, USA, 2011: 809–816.
    [10] YANG Bishan, YIH W T, HE Xiaodong, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. https://arxiv.org/abs/1412.6575, 2015.
    [11] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]. Proceedings of the 33rd International Conference on International Conference on Machine Learning (ICML), New York, USA, 2016: 2071–2080.
    [12] BALAZEVIC I, ALLEN C, and HOSPEDALES T. TuckER: Tensor factorization for knowledge graph completion[C]. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 5184–5194.
    [13] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[EB/OL]. https://arxiv.org/abs/1707.01476, 2018.
    [14] NGUYEN D Q, NGUYEN D Q, NGUYEN T D, et al. A convolutional neural network-based model for knowledge base completion and its application to search personalization[J]. Semantic Web, 2019, 10(5): 947–960. doi: 10.3233/SW-180318
    [15] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]. 15th International Conference on The Semantic Web, Heraklion, Greece, 2018: 593–607.
    [16] ZHANG Zhao, ZHUANG Fuzhen, ZHU Hengshu, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[C]. The AAAI Conference on Artificial Intelligence (AAAI), Palo Alto, USA, 2020: 9612–9619.
    [17] WU Zonghan, PAN Shirui, CHEN Fengwen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4–24. doi: 10.1109/TNNLS.2020.2978386
    [18] 王强, 江昊, 羿舒文, 等. 复杂网络的双曲空间表征学习方法[J]. 软件学报, 2021, 32(1): 93–117. doi: 10.13328/j.cnki.jos.006092

    WANG Qiang, JIANG Hao, YI Shuwen, et al. Hyperbolic representation learning for complex networks[J]. Journal of Software, 2021, 32(1): 93–117. doi: 10.13328/j.cnki.jos.006092
    [19] ZHANG Chengkun and GAO Junbin. Hype-HAN: Hyperbolic hierarchical attention network for semantic embedding[C]. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI), Yokohama, Japan, 2020: 3990–3996.
    [20] BALAŽEVIC I, ALLEN C, and HOSPEDALES T. Multi-relational poincaré graph embeddings[EB/OL]. https://arxiv.org/abs/1905.09791, 2019.
    [21] CHAMI I, WOLF A, JUAN Dacheng, et al. Low-dimensional hyperbolic knowledge graph embeddings[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL), Seattle, USA, 2020: 6901–6914.
    [22] BONNABEL S. Stochastic gradient descent on Riemannian manifolds[J]. IEEE Transactions on Automatic Control, 2013, 58(9): 2217–2229. doi: 10.1109/TAC.2013.2254619
    [23] SAKAI H and IIDUKA H. Riemannian adaptive optimization algorithm and its application to natural language processing[J]. IEEE Transactions on Cybernetics, 2021, 51(1): 1–12. doi: 10.1109/TCYB.2021.3049845.
    [24] ADCOCK A B, SULLIVAN B D, and MAHONEY M W. Tree-like structure in large social and information networks[C]. IEEE 13th International Conference on Data Mining, Dallas, USA, 2013: 1–10.
    [25] KRACKHARDT D. Computational Organization Theory[M]. London: Psychology Press, 1994: 89–111.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1025
  • HTML全文浏览量:  985
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 修回日期:  2022-02-28
  • 录用日期:  2022-01-22
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回