高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人体通信频段体内至体表信道特性分析与建模

石晶晶 刘力嘉 韩福晔 宋乐

石晶晶, 刘力嘉, 韩福晔, 宋乐. 人体通信频段体内至体表信道特性分析与建模[J]. 电子与信息学报, 2022, 44(5): 1819-1827. doi: 10.11999/JEIT210267
引用本文: 石晶晶, 刘力嘉, 韩福晔, 宋乐. 人体通信频段体内至体表信道特性分析与建模[J]. 电子与信息学报, 2022, 44(5): 1819-1827. doi: 10.11999/JEIT210267
SHI Jingjing, LIU Lijia, HAN Fuye, SONG Le. In-body to On-body Channel Characteristics Analysis and Modeling in Human Body Communication Frequency Band[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1819-1827. doi: 10.11999/JEIT210267
Citation: SHI Jingjing, LIU Lijia, HAN Fuye, SONG Le. In-body to On-body Channel Characteristics Analysis and Modeling in Human Body Communication Frequency Band[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1819-1827. doi: 10.11999/JEIT210267

人体通信频段体内至体表信道特性分析与建模

doi: 10.11999/JEIT210267
基金项目: 中央高校基本科研业务费专项(N171904010)
详细信息
    作者简介:

    石晶晶:女,1985年生,副教授,博士,研究方向为人体区域通信、信道建模、小型化天线设计、生物电磁效应等

    刘力嘉:女,1997年生,硕士生,研究方向为植入式信道建模与天线设计

    韩福晔:男,1995年生,硕士生,研究方向为人体区域信道特性分析与建模

    宋乐:男,1997年生,硕士生,研究方向为体内无线通信系统性能评估

    通讯作者:

    石晶晶 shijj@bmie.neu.edu.cn

  • 中图分类号: TN911.7; TP84

In-body to On-body Channel Characteristics Analysis and Modeling in Human Body Communication Frequency Band

Funds: Fundamental Research Funds for the Central Universities (N171904010)
  • 摘要: 为探究人体通信(HBC)频段体内无线通信系统的传输特性,该文对解剖学数值人体模型和多层异质几何人体模型的体内至体表信道特性进行电磁仿真分析,首次建立了人体通信频段内10~50 MHz体内至体表路径损耗模型,并通过生物液态仿体内测量验证了电磁仿真和路径损耗模型的有效性。首先,结合时域有限积分法和数值人体模型计算10~50 MHz人体心脏节点至体表各节点的平均路径损耗,分析对比解剖学数值人体模型和多层异质人体模型的路径损耗、阴影衰落和电磁场分布特性。其次,基于表面波传播机理,提出一个带有线性修正项的对数路径损耗模型,最后建立完整的10~50 MHz体内至体表植入式人体信道模型。仿真分析和实验结果表明,该文提出的带有线性修正项的路径损耗模型可以更准确地描述此频段体内至体表路径损耗特性,采用解剖学数值人体模型进行此频段信道建模与特性研究可以有效提高植入式信道模型的可靠性。
  • 图  1  人体模型示意图

    图  2  典型组织相对介电常数和电导率的频率特性

    图  3  基于数值人体模型的信道建模仿真设置

    图  4  心脏至体表链路的路径损耗与拟合曲线对比

    图  5  数值人体模型与异质人体模型的路径损耗特性对比

    图  6  阴影衰落变量的累积分布函数

    图  7  多层异质人体模型中的电磁场分布特性

    图  8  实验测量示意图

    图  9  小环和磁性螺旋天线系统S参数测量结果

    图  10  实测与仿真的路径损耗对比

    表  1  几种典型生物组织4阶Debye模型拟合参数值

    人体组织${\varepsilon _\infty }$$\Delta {\varepsilon _4}$$ {\tau _4}{\text{(ms)}} $${\alpha _4}$
    湿润皮肤4.000.0E+0015.9150.20
    脂肪2.51.00E+0715.9150.01
    肌肉4.02.50E+072.2740.00
    骨骼2.52.00E+0715.9150.00
    下载: 导出CSV

    表  2  路径损耗的拟合参数及均方根误差(RMSE)

    人体模型幂律对数路径损耗模型修正对数路径损耗模型
    PLdB(d0)nRMSE (dB)PLdB(d0)n$\alpha $RMSE (dB)
    数值人体57.2702.5628.98074.5801.036–0.1568.888
    异质人体63.7902.4299.65476.7201.280–0.1149.616
    下载: 导出CSV

    表  3  阴影衰落变量的统计参数

    接收方向人体模型${\sigma _{{\text{dB}}}}$(dB)$\mu $(dB)
    x 方向数值人体8.782–0.007
    异质人体7.6660.002
    y 方向数值人体7.6000.002
    异质人体7.8420.014
    z 方向数值人体8.148–0.004
    异质人体6.493–0.007
    下载: 导出CSV
  • [1] LEELATIEN P, ITO K, SAITO K, et al. Channel characteristics and wireless telemetry performance of transplanted organ monitoring system using ultrawideband communication[J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2018, 2(2): 94–101. doi: 10.1109/jerm.2018.2827779
    [2] SÄRESTÖNIEMI M, POMALAZA-RÁEZ C, KISSI C, et al. WBAN channel characteristics between capsule endoscope and receiving directive UWB on-body antennas[J]. IEEE Access, 2020, 8: 55953–55968. doi: 10.1109/access.2020.2982247
    [3] AWAN M F, BOSE P, KHALEGHI A, et al. Evaluation of secrecy capacity for next-generation leadless cardiac pacemakers[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(8): 2297–2308. doi: 10.1109/TBME.2019.2958748
    [4] JANG J, LEE J, LEE K R, et al. A four-camera VGA-resolution capsule endoscope system with 80-Mb/s body channel communication transceiver and sub-centimeter range capsule localization[J]. IEEE Journal of Solid-State Circuits, 2019, 54(2): 538–549. doi: 10.1109/jssc.2018.2873630
    [5] IEEE Computer Society. IEEE 802.15.6-2012. IEEE Standard for Local and metropolitan area networks-part 15.6: Wireless Body Area Network[S]. 2012.
    [6] 柳扬, 杨银堂, 李迪, 等. 一种无线体域网发射机体偏置线性化技术[J]. 电子与信息学报, 2017, 39(2): 499–503. doi: 10.11999/JEIT160297

    LIU Yang, YANG Yintang, LI Di, et al. Body biasing linearization technique for wireless body area network transmitter[J]. Journal of Electronics &Information Technology, 2017, 39(2): 499–503. doi: 10.11999/JEIT160297
    [7] LIAO Wei, MURAMATSU K, and WANG Jianqing. Path loss analysis and transceiver development for human body communication-based signal transmission for wearable robot control[J]. IEEE Access, 2021, 9: 20127–20135. doi: 10.1109/ACCESS.2021.3055261
    [8] HYOUNG C H, HWANG J H, KANG S W, et al. A feasibility study on the adoption of human body communication for medical service[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2015, 62(2): 169–173. doi: 10.1109/tcsii.2014.2387631
    [9] FCC. Revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission system: First report and order (ET Docket No. 98-153)[R]. Technical Report FCC 02–48, 2002.
    [10] HAN Fuye, LIU Hailian, LI Boyu, et al. HBC-UWB channel modeling for in-body to on-body communication link[C]. Proceedings of the IEEE 19th International Conference on Communication Technology (ICCT), Xi'an, China, 2019: 1458–1462.
    [11] 韦保林, 岳宏卫, 周茜, 等. 2.5~6.0 GHz信号的体内植入式信道特性分析及建模[J]. 电子与信息学报, 2013, 35(8): 2019–2023. doi: 10.3724/SP.J.1146.2012.01741

    WEI Baolin, YUE Hongwei, ZHOU Qian, et al. Analysis and modeling of 2.5~6.0 GHz signal propagation channel for human body implant[J]. Journal of Electronics &Information Technology, 2013, 35(8): 2019–2023. doi: 10.3724/SP.J.1146.2012.01741
    [12] LI Jingzhen, NIE Zedong, LIU Yuhang, et al. Characterization of in-body radio channels for wireless implants[J]. IEEE Sensors Journal, 2017, 17(5): 1528–1537. doi: 10.1109/jsen.2016.2635700
    [13] 李少华, 聂泽东, 李景振, 等. 人体通信不同信道传播特性的研究[J]. 计算机工程与应用, 2017, 53(18): 67–72. doi: 10.3778/j.issn.1002-8331.1605-0125

    LI Shaohua, NIE Zedong, LI Jingzhen, et al. Study on propagation characteristic of different channels of human body communication[J]. Computer Engineering and Applications, 2017, 53(18): 67–72. doi: 10.3778/j.issn.1002-8331.1605-0125
    [14] NAGAOKA T, WATANABE S, SAKURAI K, et al. Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry[J]. Physics in Medicine & Biology, 2003, 49(1): 1–15. doi: 10.1088/0031-9155/49/1/001
    [15] ITO K, HAGA N, TAKAHASHI M, et al. Evaluations of body-centric wireless communication channels in a range from 3 MHz to 3 GHz[J]. Proceedings of the IEEE, 2012, 100(7): 2356–2363. doi: 10.1109/jproc.2012.2190129
    [16] GABRIEL S, LAU R W, and GABRIEL C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues[J]. Physics in Medicine & Biology, 1996, 41(11): 2271–2293. doi: 10.1088/0031-9155/41/11/003
    [17] ANDREUCCETTI D, FOSSI R, and PETRUCCI C. An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz–100 GHz[EB/OL]. http://niremf.ifac.cnr.it/tissprop/, 2021.
    [18] SHI Jingjing, LIU Hailian, WANG Xin, et al. Miniaturized dual-resonant helix/spiral antenna system at MHz-Band for FSK impulse radio intrabody communications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6566–6579. doi: 10.1109/TAP.2020.2993149
    [19] HAQUE M I, YAMADA R, SHI Jingjing, et al. Channel characteristics and link budget analysis for 10–60MHz band implant communication[J]. IEICE Transactions on Communications, 2021, E104.B(4): 410–418. doi: 10.1587/transcom.2020EBP3075
    [20] WANG Jianqing, NISHIKAWA Y, and SHIBATA T. Analysis of on-body transmission mechanism and characteristic based on an electromagnetic field approach[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(10): 2464–2470. doi: 10.1109/tmtt.2009.2029632
    [21] BAE J, CHO H, SONG K, et al. The signal transmission mechanism on the surface of human body for body channel communication[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 582–593. doi: 10.1109/tmtt.2011.2178857
    [22] PENG Yunxiao, SAITO K, and ITO K. Antenna design for impulse-radio-based wireless capsule endoscope communication systems[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10): 5031–5042. doi: 10.1109/tap.2018.2854360
    [23] HARTSGROVE G, KRASZEWSKI A, and SUROWIEC A. Simulated biological materials for electromagnetic radiation absorption studies[J]. Bioelectromagnetics, 1987, 8(1): 29–36. doi: 10.1002/bem.2250080105
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1524
  • HTML全文浏览量:  1010
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 修回日期:  2021-09-27
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回