高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时不变点状波束优化的目标距离-角度联合估计

初伟 刘云清 刘文宇 李晓龙

初伟, 刘云清, 刘文宇, 李晓龙. 基于时不变点状波束优化的目标距离-角度联合估计[J]. 电子与信息学报. doi: 10.11999/JEIT210265
引用本文: 初伟, 刘云清, 刘文宇, 李晓龙. 基于时不变点状波束优化的目标距离-角度联合估计[J]. 电子与信息学报. doi: 10.11999/JEIT210265
Wei CHU, Yunqing LIU, Wenyug LIU, Xiaolong LI. The Range-angle Estimation of Target Based on Time-invariant and Spot Beam Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT210265
Citation: Wei CHU, Yunqing LIU, Wenyug LIU, Xiaolong LI. The Range-angle Estimation of Target Based on Time-invariant and Spot Beam Optimization[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT210265

基于时不变点状波束优化的目标距离-角度联合估计

doi: 10.11999/JEIT210265
基金项目: 吉林省科技发展计划项目(20190303080SF),长春理工大学青年科学基金(201915010011)
详细信息
    作者简介:

    初伟:男,1989年生,博士生,研究方向为雷达阵列信号处理和毫米波目标检测

    刘云清:男,1970年生,教授,博士生导师,主要从事雷达信号处理、智能信息处理、微波技术领域的研究等

    刘文宇:男,1997年生,硕士生,研究方向为信号与信息处理

    李晓龙:男,1989年生,讲师,博士,研究方向为雷达信号处理

    通讯作者:

    刘云清 mzliuyunqing@163.com

  • 中图分类号: TN959

The Range-angle Estimation of Target Based on Time-invariant and Spot Beam Optimization

Funds: The Science and Technology Department of Jilin Province (20190303080SF), The Natural Science Foundation of ChangChun University of Science and Technology (201915010011)
  • 摘要: 应用频控阵式多输入多输出(FDA-MIMO)雷达实现目标距离-角度联合估计越来越受到人们的重视,利用FDA同时获得发射波束图在角度和距离的自由度。但其性能因波束图的周期性和时变性而降低。因此,该文基于时间调制和距离补偿FDA-MIMO(TMRC-FDA-MIMO)雷达的新波形合成模型,提出了一种改进的基于旋转不变技术的信号参数估计(ESPRIT)算法。最后,通过距离和角度估计的克拉美罗下界和均方根误差,与固定频偏FDA-MIMO、对数频偏FDA-MIMO雷达系统和多信号分类(MUSIC)算法进行了对比,验证了所提方法的优异性能。
  • 图  1  TMRC-FDA-MIMO雷达收发子阵划分方案

    图  2  基于TMRC-FDA的波形响应

    图  3  基于MUSIC算法的两个近距离同角度目标的响应

    图  4  比较了三种雷达系统的CRLB

    图  5  在不同的SNR下,目标的RMSE曲线在

    表  1  距离-角度联合估计算法步骤

    步骤1将接收信号矩阵${{U}}$分为两个子阵,
    ${{{U}}_{\rm{1}}}$和${{{U}}_{\rm{2}}}$两个子阵;
    步骤2根据公式(25)的旋转矩阵${{{\varPsi }}_r}$估计目标角度$ {\stackrel{\wedge }{\theta }}_{p},p\in \left\{1,2,\cdots ,P\right\}$,其中$P$代表目标数量;
    步骤3根据式(25)计算第$p$个目标的权重矢量${{{w}}_p}$;
    步骤4根据式(30)的矩阵${{{\varPsi '}}_t}$估计出目标的距离值${{\mathop r\limits^ \wedge } _p}$,
    然后就可以获得目标距离、角度坐标$\left( {{{{\mathop r\limits^ \wedge} }_p},{{\mathop \theta \limits^ \wedge }_p}} \right)$;
    步骤5重复步骤3和步骤4来估计其他目标的参数。
    下载: 导出CSV
  • [1] DING Xiao, CHENG Youfeng, SHAO Wang, et al. A wide-angle scanning planar phased array with pattern reconfigurable magnetic current element[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1434–1439. doi: 10.1109/TAP.2016.2637863
    [2] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. Proceedings of 2006 IEEE Conference on Radar, Verona, USA, 2006: 215–217.
    [3] 王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011.

    WANG Wenqin, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics &Information Technology, 2016, 38(4): 1000–1011.
    [4] SECMEN M, DEMIR S, HIZAL A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 427–430.
    [5] YANG Kaikai, HONG Sheng, ZHU Qi, et al. Maximum likelihood angle-range estimation for monostatic FDA-MIMO radar with extended range ambiguity using subarrays[J]. International Journal of Antennas and Propagation, 2020, 2020: 4601208.
    [6] WANG Cheng, ZHENG Wang, GONG Pan, et al. Joint angle and range estimation in the fda-mimo radar: The reduced-dimension root music algorithm[J]. Wireless Personal Communications, 2020, 115(3): 2515–2533. doi: 10.1007/s11277-020-07694-4
    [7] WANG Cheng, LI Zheng, and ZHANG Xiaofei. FDA-MIMO for joint angle and range estimation: Unfolded coprime framework and parameter estimation algorithm[J]. IET Radar, Sonar & Navigation, 2020, 14(6): 917–926.
    [8] TANG Wengen, JIANG Hong, and ZHANG Qi. Range-angle decoupling and estimation for FDA-MIMO radar via atomic norm minimization and accelerated proximal gradient[J]. IEEE Signal Processing Letters, 2020, 27: 366–370.
    [9] WANG Cheng, ZHANG Xiaofei, and LI Jianfeng. FDA-MIMO radar for 3D localization: Virtual coprime planar array with unfolded coprime frequency offset framework and TRD-MUSIC algorithm[J]. Digital Signal Processing, 2021, 113: 103017.
    [10] KHAN W, QURESHI I M, and SAEED S. Frequency diverse array radar with logarithmically increasing frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 499–502.
    [11] YAN Yisheng, CAI Jingye, and WANG Wenqin. Two-stage ESPRIT for unambiguous angle and range estimation in FDA-MIMO radar[J]. Digital Signal Processing, 2019, 92: 151–165.
    [12] YAO Amin, WU Wen, and FANG Dagang. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4434–4446.
    [13] CHU Wei, LIU Yunqing, LI Xiaolong, et al. Optimization of emission waveform by accelerated particle swarm algorithm based on logarithmic frequency offset mathematical model[J]. Wireless Personal Communications, 2020, 113(1): 167–187.
    [14] 王伟伟, 吴孙勇, 许京伟, 等. 基于频率分集阵列的机载雷达距离模糊杂波抑制方法[J]. 电子与信息学报, 2015, 37(10): 2321–2327.

    WANG Weiwei, WU Sunyong, XU Jingwei, et al. Range ambiguity clutter suppression for airborne radar based on frequency diverse array[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2321–2327.
    [15] WANG Wenqin. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073–4081. doi: 10.1109/TAP.2013.2260515
    [16] RAO B D and HARI K V S. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12): 1990–1995.
    [17] GUI Ronghua, WANG Wenqin, CUI Can, et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 200–214. doi: 10.1109/TSP.2017.2764860
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  858
  • HTML全文浏览量:  206
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 修回日期:  2021-05-25
  • 网络出版日期:  2021-06-04

目录

    /

    返回文章
    返回