高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于子空间结构正则化的L21非负矩阵分解高光谱解混

陈善学 刘荣华

陈善学, 刘荣华. 基于子空间结构正则化的L21非负矩阵分解高光谱解混[J]. 电子与信息学报, 2022, 44(5): 1704-1713. doi: 10.11999/JEIT210232
引用本文: 陈善学, 刘荣华. 基于子空间结构正则化的L21非负矩阵分解高光谱解混[J]. 电子与信息学报, 2022, 44(5): 1704-1713. doi: 10.11999/JEIT210232
CHEN Shanxue, LIU Ronghua. L21 Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Subspace Structure Regularization[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1704-1713. doi: 10.11999/JEIT210232
Citation: CHEN Shanxue, LIU Ronghua. L21 Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Subspace Structure Regularization[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1704-1713. doi: 10.11999/JEIT210232

基于子空间结构正则化的L21非负矩阵分解高光谱解混

doi: 10.11999/JEIT210232
基金项目: 国家自然科学基金(61271260),重庆市教委科学技术研究项目(KJ1400416)
详细信息
    作者简介:

    陈善学:男,1966年生,教授,研究方向为图像处理、数据压缩

    刘荣华:女,1995年生,硕士生,研究方向为高光谱图像解混

    通讯作者:

    刘荣华 1181396334@qq.com

  • 中图分类号: TN911.73

L21 Nonnegative Matrix Factorization for Hyperspectral Unmixing Based on Subspace Structure Regularization

Funds: The National Natural Science Foundation of China (61271260), The Science and Technology Research Project of Chongqing Municipal Education Commission (KJ1400416)
  • 摘要: 标准的非负矩阵分解(NMF)应用于高光谱解混时,容易受到噪声和异常值的干扰,解混效果较差。为了提高分解性能,该文将L21范数引入标准的NMF算法中,对模型进行了改进,从而提高算法的鲁棒性。其次,为了提高分解后丰度矩阵的稀疏性,将双重加权稀疏约束引入L21NMF模型中,使其中一个权值提高每个像元对应的丰度向量上的稀疏性,另一个权值提高每个端元对应的丰度向量上的稀疏性。同时,为了利用像元的全局空间分布信息,观察地物在不同图像中的真实分布情况,引入子空间结构正则项,提出了基于子空间结构正则化的L21非负矩阵分解(L21NMF-SSR)算法。通过在模拟数据集和真实数据集与其他经典算法的比较,验证了该算法具有更好的性能,同时具有去噪能力。
  • 图  1  模拟数据中的光谱曲线

    图  2  L21NMF-SSR在λ1值下的SAD和RMSE

    图  3  L21NMF-SSR在λ2α值下的SAD和RMSE

    图  4  不同算法在不同端元数目的性能比较

    图  5  L21NMF-SSR提取的端元特征与参考特征的对比

    图  6  不同算法的丰度图对比

    图  7  L21NMF-SSR提取端元特征与真实端元特征的对比

    图  8  不同算法在Urban数据集的丰度图对比

    表  1  L21NMF-SSR算法(算法1)

     输入:高光谱图像矩阵${\boldsymbol{Y}}$
     输出:端元矩阵${\boldsymbol{E}}$,丰度矩阵${\boldsymbol{A}}$和自表达矩阵${\boldsymbol{Z}}$
     步骤1:使用VCA-FCLS初始化${\boldsymbol{E}}$和${\boldsymbol{A}}$,利用LRR计算${\boldsymbol{Z}}$,且
         ${\boldsymbol{L}} = {\boldsymbol{Z}}$;
     步骤2:利用式(20)更新${\boldsymbol{E}}$;
     步骤3:用${{\boldsymbol{Y}}_f}$和${{\boldsymbol{E}}_f}$替换${\boldsymbol{Y}}$和${\boldsymbol{E}}$;
     步骤4:利用式(24)、式(26)更新${\boldsymbol{A}}$和${\boldsymbol{Z}}$;
     步骤5:用SVT更新${\boldsymbol{L}}$;
     步骤6:直到满足停止条件;
    下载: 导出CSV

    表  2  不同算法在不同信噪比级别下的SAD值的比较

    SNR(dB)L1/2-NMFRSNMFSRRNMFSSRNMFSSR-NMFL21NMF-SSR
    150.19330.18960.17950.16220.14470.1025
    200.14900.12930.11270.09390.06530.0528
    250.09980.09650.08980.08000.04910.0391
    300.09520.08530.06390.05610.02670.0160
    350.06120.05140.04620.02650.00940.0073
    下载: 导出CSV

    表  3  不同算法在不同信噪比级别下的RMSE值的比较

    SNR(dB)L1/2-NMFRSNMFSRRNMFSSRNMFSSR-NMFL21NMF-SSR
    150.36690.33520.32470.28210.26190.1796
    200.27540.24880.17930.16140.15410.0996
    250.11720.10670.11250.09260.06590.0560
    300.10930.09010.07240.06420.04620.0318
    350.08610.06230.05220.04560.03120.0186
    下载: 导出CSV

    表  4  不同算法在Jasper Ridge数据集的SAD值对比

    L1/2-NMFRSNMFSRRNMFSSRNMFSSR-NMFL21NMF-SSR
    树木0.12840.17210.13060.13380.11310.1224
    水体0.08160.10610.08620.11950.09580.0307
    土壤0.15330.15840.15450.11890.14450.1711
    道路0.11740.10500.12120.11230.07230.0494
    均值0.12020.12170.12310.12110.10640.0934
    下载: 导出CSV

    表  5  不同算法在Jasper Ridge数据集的RMSE值对比

    L1/2-NMFRSNMFSRRNMFSSRNMFSSR-NMFL21NMF-SSR
    RMSE 0.2126 0.2080 0.2124 0.1564 0.1415 0.1311
    下载: 导出CSV

    表  6  不同算法在Urban数据集的SAD值对比

    L1/2-NMFRSNMFSRRNMFSSRNMFSSR-NMFL21NMF-SSR
    沥青0.36290.26310.25150.26610.17340.1324
    玻璃0.32780.23890.28390.21960.20090.1574
    树木0.20180.19750.19560.14090.11060.1130
    屋顶0.14090.20640.17830.18510.14630.1194
    均值0.25840.22650.22730.20290.15780.1306
    下载: 导出CSV

    表  7  不同算法在Urban数据集的RMSE值对比

    L1/2-NMFRSNMFSRRNMFSSRNMFSSR-NMFL21NMF-SSR
    RMSE0.35670.34930.34110.32830.27870.2581
    下载: 导出CSV
  • [1] 祝伟, 王雪, 黄岩, 等. 重加权稀疏和全变差约束下的深度非负矩阵分解高光谱解混[J]. 遥感学报, 2020, 24(4): 401–416.

    ZHU Wei, WANG Xue, HUANG Yan, et al. Reweighted sparsity regularized deep nonnegative matrix factorization with total variation toward hyperspectral unmixing[J]. Journal of Remote Sensing, 2020, 24(4): 401–416.
    [2] LE Dong, YUAN Yuan, and LUXS X. Spectral–spatial joint sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2391–2402. doi: 10.1109/TGRS.2020.3006109
    [3] 陈晋, 马磊, 陈学泓, 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016, 20(5): 1102–1109.

    CHEN Jin, MA Lei, CHEN Xuehong, et al. Research progress of spectral mixture analysis[J]. Journal of Remote Sensing, 2016, 20(5): 1102–1109.
    [4] YUAN Yuan, ZHANG Zihan, and WANG Qi. Improved collaborative non-negative matrix factorization and total variation for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 998–1010. doi: 10.1109/JSTARS.2020.2977399
    [5] BIOUCAS-DIAS J M, PLAZA A, DOBIGEON N, et al. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(2): 354–379. doi: 10.1109/JSTARS.2012.2194696
    [6] LI Jun and BIOUCAS-DIAS J M. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data[C]. IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: 250–253.
    [7] CHAN T H, CHI C Y, HUANG Yumin, et al. A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4418–4432. doi: 10.1109/TSP.2009.2025802
    [8] BERMAN M, KIIVERI H, LAGERSTROM R, et al. ICE: A statistical approach to identifying endmembers in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2085–2095. doi: 10.1109/TGRS.2004.835299
    [9] 袁博. 空间与谱间相关性分析的NMF高光谱解混[J]. 遥感学报, 2018, 22(2): 265–276.

    YUAN Bo. NMF hyperspectral unmixing algorithm combined with spatial and spectral correlation analysis[J]. Journal of Remote Sensing, 2018, 22(2): 265–276.
    [10] WANG Nan, DU Bo, ZHANG Liangpei, et al. An abundance characteristic-based independent component analysis for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 416–428. doi: 10.1109/TGRS.2014.2322862
    [11] HE Wei, ZHANG Hongyan, and ZHANG Liangpei. Sparsity-regularized robust non-negative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4267–4279. doi: 10.1109/JSTARS.2016.2519498
    [12] 徐光宪, 王延威, 马飞, 等. 基于最小体积稀疏正则的高光谱解混方法的研究[J]. 激光与光电子学进展, 2020, 57(24): 241010.

    XU Guangxian, WANG Yanwei, MA Fei, et al. Based on method of Hyperspectral unmixing minimum volume of sparse regularization[J]. Laser &Optoelectronics Progress, 2020, 57(24): 241010.
    [13] WANG Nan, DU Bo, and ZHANG Liangpei. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 554–569. doi: 10.1109/JSTARS.2013.2242255
    [14] QIAN Yuntao, JIA Sen, ZHOU Jun, et al. Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4282–4297. doi: 10.1109/TGRS.2011.2144605
    [15] CANDÈS E J, WAKIN M B, and BOYD S P. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905.
    [16] QU Kewen and BAO Wenxing. Multiple-Priors ensemble constrained nonnegative matrix factorization for spectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 963–975. doi: 10.1109/JSTARS.2020.2976602
    [17] LU Xiaoqiang, WU Hao, YUAN Yuan, et al. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2815–2826. doi: 10.1109/TGRS.2012.2213825
    [18] LU Xiaoqiang, DONG Le, and YUAN Yuan. Subspace clustering constrained sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3007–3019. doi: 10.1109/TGRS.2019.2946751
    [19] ZHOU Lei, ZHANG Xueni, WANG Jianbo, et al. Subspace structure regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4257–4270. doi: 10.1109/JSTARS.2020.3011257
    [20] HUANG Risheng, LI Xiaorun, and ZHAO Liaoying. Spectral–spatial robust nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 8235–8254. doi: 10.1109/TGRS.2019.2919166
    [21] 周昌, 李向利, 李俏霖, 等. 基于余弦相似度的稀疏非负矩阵分解算法[J]. 计算机科学, 2020, 47(10): 108–113. doi: 10.11896/jsjkx.190700112

    ZHOU Chang, LI Xiangli, LI Qiaolin, et al. Sparse non-negative matrix factorization algorithm based on cosine similarity[J]. Computer Science, 2020, 47(10): 108–113. doi: 10.11896/jsjkx.190700112
    [22] LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171–184. doi: 10.1109/TPAMI.2012.88
    [23] CAI Jianfeng, CANDÈS E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970
    [24] HE Wei, ZHANG Hongyan, and ZHANG Liangpei. Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3909–3921. doi: 10.1109/TGRS.2017.2683719
    [25] http://www.ehu.es/ccwintco/index.php/Hyperspectral_Imagery_Synthesis tools for MATLAB, 2020.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  1434
  • HTML全文浏览量:  693
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-08-13
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回