Beam Rotating Precoding Scheme for Millimeter-wave Massive MIMO Systems
-
摘要: 为解决毫米波大规模多输入多输出(MIMO)系统因功率泄漏导致的能量损耗问题,该文提出基于最小相位误差的波束旋转(MPE-BR)预编码方案。首先,采用基于相移器的波束选择网络,构建波束选择集合,系统中每个射频(RF)链通过选择多个波束达到收集泄漏功率的目的。然后,以最大增益波束为基准,根据最小相位误差准则确定波束选择集合的相位,将所选波束的信道增益近似对准同一方向,使得用户的接收信噪比(SNR)最大,从而提高系统性能。此外,该文对所提预编码算法进行了理论分析,推导了频谱效率上界和能量效率上界。实验验证了理论推导的正确性,仿真结果表明,所提方法具有接近无漏功率的和速率性能,与现有的算法相比,所提方案具有较好的频谱效率和能量效率性能。
-
关键词:
- 毫米波大规模MIMO /
- 波束旋转 /
- 预编码 /
- 功率泄漏
Abstract: In beam space millimeter-wave massive Multi-Input Multi-Output (MIMO) system, the power leakage problem will lead to energy loss. To mitigate this problem, Minimum Phase Error based Beam Rotating (MPE-BR) precoding scheme is proposed. Firstly, the phase shifter-based beam selection network is adopted, the beam selection set is constructed such that each Radio Frequency (RF) chain selects multiple beams collect the leaked power in system. Then, the beam rotation combination scheme based on minimum phase is proposed. Maximum gain beam is taken as reference. The phases of the beam selection set are determined by minimum phase error criterion such that the channel gains of the selected beams are approximatively aligned in the same direction for maximizing the Signal-to-Noise Ratio (SNR) of each user. System performance is improved. Furthermore, the proposed precoding algorithm is theoretically analyzed. The expression of the upper bound of spectrum efficiency and energy efficiency are given. The correctness of the theoretical derivation is verified in experiment, and the performance of proposed method is close to the ideal case of no-leakage power. The proposed scheme obtains better spectrum efficiency and energy efficiency performance than the existing algorithms.-
Key words:
- Millimeter-wave massive MIMO /
- Beam rotating /
- Precoding /
- Power leakage
-
表 1 MPE-BR预编码算法
输入:$ {\boldsymbol{\tilde H}} $,用户数$ M $,每个用户的最大波束选择数量$ {B_{\max }} $,选择门限$ \kappa $; 输出:${{\boldsymbol{F}}}_{\text{RF} }$, ${{\boldsymbol{F}}}_{\text{BB} }$ (1) 初始化天线集合$ \text{}=\{1,2,\cdots ,N\} $,波束选择集合${\mathcal{B} } = \varnothing$ (2) for $k \le M$ do (3) 初始化第$ k $个用户的所选波束集合${ {\mathcal{B} }_k} = \varnothing$,功率泄漏波束集合${ {\mathcal{A} }_k} = \varnothing$,候选波束集合${ {\mathcal{C} }_k} = \varnothing$, $ {\boldsymbol{f}}_{{\text{RF}}}^k = 0 $; (4) $ {p_{\max }} = \arg {\max _{n \in {\mathcal{J}}\backslash {\mathcal{B}}}}\left| {{{{\boldsymbol{\tilde h}}}_{kn}}} \right| $,设置$ {\boldsymbol{f}}_{{\text{RF}}}^{k{p_{\max }}} = 1 $及$ {{\mathcal{B}}_k} = {{\mathcal{B}}_k} \cup \left\{ {{p_{\max }}} \right\} $,确定$ {{\mathcal{A}}_k} $; (5) 更新候选波束集合$ {{\mathcal{C}}_k} = {{\mathcal{A}}_k}\backslash {{\mathcal{B}}_k} $; (6) $ p = \arg {\max _{n \in {{\mathcal{C}}_k}}}\left| {{{{\boldsymbol{\tilde h}}}_{kn}}} \right| $, $ {{\mathcal{B}}_k} = {{\mathcal{B}}_k} \cup \left\{ p \right\} $; (7) 根据式(15)和式(16)计算$ {\boldsymbol{f}}_{{\text{RF}}}^{kp} $; (8) 重复执行步骤5~7,直至${ {\boldsymbol{\tilde h} }_{kp} } \le \kappa { {\boldsymbol{\tilde h} }_{k{p_{\max } } } }$或$ {B_k} > {B_{\max }} $; (9) $ {\mathcal{B}} = {\mathcal{B}} \cup {{\mathcal{B}}_k} $; (10) end for
(11) $ {{\boldsymbol{F}}_{{\text{RF}}}} = \left[ {{\boldsymbol{f}}_{{\text{RF}}}^{\text{1}},{\boldsymbol{f}}_{{\text{RF}}}^{\text{2}}, \cdots ,{\boldsymbol{f}}_{{\text{RF}}}^{{N_{{\text{RF}}}}}} \right] $; $ {{\boldsymbol{\bar h}}_k} = {\boldsymbol{F}}_{{\text{RF}}}^{\text{H}}{{\boldsymbol{\tilde h}}_k} $, $ {\alpha _k}{\text{ = }}{1 \mathord{\left/ {\vphantom {1 {\left\| {{{{\boldsymbol{\bar h}}}_{\text{k}}}} \right\|}}} \right. } {\left\| {{{{\boldsymbol{\bar h}}}_{\text{k}}}} \right\|}} $, $ {\boldsymbol{f}}_{{\text{BB}}}^k{\text{ = }}{\alpha _k}{{\boldsymbol{\bar h}}_k} $; $ {{\boldsymbol{F}}_{{\text{BB}}}} = \left[ {{\boldsymbol{f}}_{{\text{BB}}}^{\text{1}},{\boldsymbol{f}}_{{\text{BB}}}^{\text{2}}, \cdots ,{\boldsymbol{f}}_{{\text{BB}}}^M} \right] $. -
[1] SWINDLEHURST A L, AYANOGLU E, HEYDARI P, et al. Millimeter-wave massive MIMO: The next wireless revolution[J]. IEEE Communications Magazine, 2014, 52(9): 56–62. doi: 10.1109/MCOM.2014.6894453 [2] 张平, 陶运铮, 张治. 5G若干关键技术评述[J]. 通信学报, 2016, 37(7): 15–29. doi: 10.11959/j.issn.1000-436x.2016130ZHANG Ping, TAO Yunzheng, and ZHANG Zhi. Survey of several key technologies for 5G[J]. Journal on Communications, 2016, 37(7): 15–29. doi: 10.11959/j.issn.1000-436x.2016130 [3] MORSALI A and CHAMPAGNE B. Achieving fully-digital performance by hybrid analog/digital beamforming in wide-band massive-MIMO systems[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 5125–5129. [4] 解培中, 孙锐, 李汀. 基于连续干扰消除的毫米波MIMO系统混合预编码算法[J]. 电子与信息学报, 2019, 41(2): 409–416. doi: 10.11999/JEIT180379XIE Peizhong, SUN Rui, and LI Ting. Hybrid precoding algorithm based on successive interference cancellation for millimeter wave MIMO systems[J]. Journal of Electronics &Information Technology, 2019, 41(2): 409–416. doi: 10.11999/JEIT180379 [5] BRADY J, BEHDAD N, and SAYEED A M. Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3814–3827. doi: 10.1109/TAP.2013.2254442 [6] SHENG Hualian, CHEN Xihan, SHEN Kaiming, et al. Energy efficiency optimization for beamspace massive MIMO systems with low-resolution ADCs[C]. IEEE Wireless Communications and Networking Conference (WCNC), Seoul, Korea, 2020: 1–7. [7] TANG Siyang, MA Zheng, XIAO Ming, et al. Hybrid transceiver design for beamspace MIMO-NOMA in code-domain for mmWave communication using lens antenna array[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9): 2118–2127. doi: 10.1109/JSAC.2020.3000885 [8] GAO Xinyu, DAI Linglong, and SAYEED A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications[J]. IEEE Communications Magazine, 2018, 56(4): 211–217. doi: 10.1109/MCOM.2018.1600727 [9] AMADORI P V and MASOUROS C. Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection[J]. IEEE Transactions on Communications, 2015, 63(6): 2212–2223. doi: 10.1109/TCOMM.2015.2431266 [10] HU Qiyu, LIU Yanzhen, CAI Yunlong, et al. Joint deep reinforcement learning and unfolding: beam selection and precoding for mmWave multiuser MIMO with lens arrays[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2289–2304. doi: 10.1109/JSAC.2021.3087233 [11] SAYEED A and BRADY J. Beamspace MIMO for high-dimensional multiuser communication at millimeter-wave frequencies[C]. 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, USA, 2013: 3679–3684. [12] GAO Xinyu, DAI Linglong, CHEN Zhijie, et al. Near-optimal beam selection for beamspace MmWave massive MIMO systems[J]. IEEE Communications Letters, 2016, 20(5): 1054–1057. doi: 10.1109/LCOMM.2016.2544937 [13] GAO Yuan, KHALIEL M, ZHENG Feng, et al. Rotman lens based hybrid analog–digital beamforming in massive MIMO systems: Array architectures, beam selection algorithms and experiments[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9134–9148. doi: 10.1109/TVT.2017.2714693 [14] SARKER M A L, KADER M F, and HAN D S. Rate-loss mitigation for a millimeter-wave beamspace MIMO lens antenna array system using a hybrid beam selection scheme[J]. IEEE Systems Journal, 2020, 14(3): 3582–3585. doi: 10.1109/JSYST.2020.2964283 [15] XIE Tian, DAI Linglong, NG D W K, et al. On the power leakage problem in millimeter-wave massive MIMO with lens antenna arrays[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4730–4744. doi: 10.1109/TSP.2019.2926019 [16] EL AYACH O, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499–1513. doi: 10.1109/TWC.2014.011714.130846 [17] ZENG Yong and ZHANG Rui. Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm[J]. IEEE Transactions on Communications, 2016, 64(4): 1557–1571. doi: 10.1109/TCOMM.2016.2533490 [18] ZHANG Jianjun, HUANG Yongming, WANG Jiaheng, et al. Per-antenna constant envelope precoding and antenna subset selection: A geometric approach[J]. IEEE Transactions on Signal Processing, 2016, 64(23): 6089–6104. doi: 10.1109/TSP.2016.2582463 [19] MÉNDEZ-RIAL R, RUSU C, GONZÁLEZ-PRELCIC N, et al. Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?[J]. IEEE Access, 2016, 4: 247–267. doi: 10.1109/ACCESS.2015.2514261 [20] AKDENIZ M R, LIU Yuanpeng, SAMIMI M K, et al. Millimeter wave channel modeling and cellular capacity evaluation[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1164–1179. doi: 10.1109/JSAC.2014.2328154