高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向多业务场景的端到端网络切片安全部署算法

赵季红 冯晴 王智 何晓媛

赵季红, 冯晴, 王智, 何晓媛. 面向多业务场景的端到端网络切片安全部署算法[J]. 电子与信息学报, 2022, 44(4): 1421-1428. doi: 10.11999/JEIT210195
引用本文: 赵季红, 冯晴, 王智, 何晓媛. 面向多业务场景的端到端网络切片安全部署算法[J]. 电子与信息学报, 2022, 44(4): 1421-1428. doi: 10.11999/JEIT210195
ZHAO Jihong, FENG Qing, WANG Zhi, HE Xiaoyuan. End to End Network Slicing Security Deployment Algorithm for Multi Service Scenarios[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1421-1428. doi: 10.11999/JEIT210195
Citation: ZHAO Jihong, FENG Qing, WANG Zhi, HE Xiaoyuan. End to End Network Slicing Security Deployment Algorithm for Multi Service Scenarios[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1421-1428. doi: 10.11999/JEIT210195

面向多业务场景的端到端网络切片安全部署算法

doi: 10.11999/JEIT210195
基金项目: 国家重点研发计划重点专项(2018YFB1800305)
详细信息
    作者简介:

    赵季红:女,1963年生,教授,博士生导师,研究方向为带宽通信网、新一代网络的管理和控制

    冯晴:女,1996年生,硕士生,研究方向为网络切片、网络虚拟化

    王智:男,1996年生,硕士生,研究方向为虚拟网络映射

    何晓媛:女,1995年生,硕士生,研究方向为虚拟网络映射

    通讯作者:

    冯晴 1342689541@qq.com

  • 中图分类号: TN929.5

End to End Network Slicing Security Deployment Algorithm for Multi Service Scenarios

Funds: The Key Special Projects of National Key Research and Development Plan (2018YFB1800305)
  • 摘要: 5G移动通信中,网络切片(NS)的引入成功解决了不同业务场景的网络资源分配不均问题。针对传统算法无法满足5G网络的多业务场景切片安全部署问题,该文提出一种针对于多业务场景的端到端网络切片安全需求(NSR)部署算法。首先,针对切片部署过程中节点的安全性进行了定义;其次,根据节点的安全性进行排序和映射,在此基础上,以最小化网络资源部署成本的同时提高部署的安全收益为目标,构建切片部署的数学模型;最后,考虑到每种类型切片的资源需求不同,提出一种针对性的部署算法实现端到端网络切片的安全部署。仿真结果表明,所提算法在满足端到端网络切片安全部署的同时,降低了部署的成本,获得了较好的部署安全收益。
  • 图  1  端到端切片部署示意图

    图  2  节点安全部署示例

    图  3  网络切片平均部署成本

    图  4  网络切片平均安全收益

    表  1  虚拟节点安全等级排序算法

     输入:原始的节点集合$ {N^{\rm{R}}} $
     输出:排序的节点集合${{S} }({N^{\rm{R} } })$
     (1) 计算所有节点的安全性NS并进行降序排列
     (2) 将NS值最高的节点标记为R,并作为根节点生成BFS树
     (3) 将树中的每一层节点按照式(1)中方法排序
     (4) 返回排序后的节点集合${{S} }({N^{\rm{R} } })$
    下载: 导出CSV

    表  2  切片请求中虚拟节点映射算法

     输入:网络切片请求
     输出:映射的节点集合
     (1) for 每一个虚拟节点i do
     (2)  if $i = {{R} }$ then
     (3)   映射到具有最高安全等级的物理节点上
     (4)  if $i \ne {{R} }$ then
     (5)   选择$ i $的父节点F, 物理节点P
     (6)   选择P的相邻节点为备用节点集合A
     (7)   满足节点容量的同时选择集合${{A} }$中$ {\rm{NS}} $值最大的节点
     (8)  end if
     (9)  返回节点集合
     (10) end for
    下载: 导出CSV

    表  3  切片请求中虚拟链路映射算法

     输入:网络切片请求
     输出:映射后的链路集合
     (1) 将链路的带宽进行降序排列
     (2) for 每一条虚拟链路 do
     (3)  计算该链路的带宽,并进行链路筛选
     (4)  找到虚拟链路的两端的物理节点
     (5)  利用插点法寻找两个链路之间的最短路径作为虚拟链路的
        映射路径
     (6)  返回链路集合
     (7) end for
    下载: 导出CSV

    表  4  eMBB切片跨域部署实现算法

     输入:eMBB类型切片$ {R^{\rm{e}}} $,网络资源$ {G^{\rm{P}}} $
     输出:部署结果
     (1) 依据算法1对节点排序得到$ S\left( {{N^{\rm{R}}}} \right) $
     (2) 依据算法2按照排序结果对ANs节点进行映射
     (3) 依据算法2按照排序结果对CNs节点进行映射
     (4) 依据算法3完成链路映射
     (5) 依据链路映射结果对TNs节点进行映射
     (6) 返回部署结果
    下载: 导出CSV

    表  5  mMTC切片跨域部署实现算法

     输入:mMTC类型切片$ {R^{\rm{m}}} $,网络资源$ {G^{\rm{P}}} $
     输出:部署结果
     (1) 依据表1算法对节点排序得到$ S\left( {{N^{\rm{R}}}} \right) $
     (2) 依据表2算法按照排序结果对CNs节点进行映射
     (3) 选择资源满足需求的ANs节点作为候选ANs节点
     (4) 搜索CNs节点和候选ANs节点之间的候选物理链路集合,并
       根据对比结果完成链路映射
     (5) 依据虚拟链路映射结果对TNs节点进行映射
     (6) 完成ANs节点的映射
     (7) 返回部署结果
    下载: 导出CSV

    表  6  uRLLC切片跨域部署实现算法

     输入:uRLLC类型切片$ {R^{\rm{u}}} $,网络资源$ {G^{\rm{P}}} $
     输出:部署结果
     (1) 依据表1算法对节点排序得到$ S\left( {{N^{\rm{R}}}} \right) $
     (2) 依据节点安全等级选择ANs节点CNs节点作为候选节点集合
     (3) 搜索候选CNs节点和候选ANs节点之间的候选物理路径集合,

       并根据对比结果完成链路映射
     (4) 依据虚拟链路映射结果对TNs节点进行映射
     (5) 完成ANs节点,CNs节点的映射
     (6) 返回部署结果
    下载: 导出CSV
  • [1] LI Taihui, ZHU Xiaorong, and LIU Xu. An end-to-end network slicing algorithm based on deep Q-Learning for 5G network[J]. IEEE Access, 2020, 8: 122229–122240. doi: 10.1109/ACCESS.2020.3006502
    [2] 陈山枝. 发展5G的分析与建议[J]. 电信科学, 2016, 32(7): 1–10.

    CHEN Shanzhi. Analysis and suggestion of future 5G directions[J]. Telecommunications Science, 2016, 32(7): 1–10.
    [3] FISCHER A and DE MEER H. Position paper: Secure virtual network embedding[J]. Praxis Der Informationsverarbeitung Und Kommunikation, 2011, 34(4): 190–193.
    [4] ALJUHANI A and ALHARBI T. Virtualized network functions security attacks and vulnerabilities[C]. Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA, 2017: 1–4.
    [5] ZHOU Jinhe, ZHAO Wenjun, and CHEN Shuo. Dynamic network slice scaling assisted by prediction in 5G network[J]. IEEE Access, 2020, 8: 133700–133712. doi: 10.1109/ACCESS.2020.3010623
    [6] HARUTYUNYAN D, FEDRIZZI R, SHAHRIAR N, et al. Orchestrating end-to-end slices in 5G networks[C]. 2019 15th International Conference on Network and Service Management (CNSM), Halifax, Canada, 2019: 1–9.
    [7] ZHAO Hailiang, DENG Shuiguang, LIU Zijie, et al. DPoS: Decentralized, privacy-preserving, and low-complexity online slicing for multi-tenant networks[C]. IEEE Transactions on Mobile Computing, Los Alamitos, USA, 2021.
    [8] ZHAO Guanqun, QIN Shuang, and FENG Gang. Network slice selection in softwarization based mobile networks[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, The United Arab Emirates, 2018: 1–7.
    [9] WANG Jingpei, SUN Bin, and NIU Xinxin. A trust model evaluation algorithm based on trusted modeling process[J]. Journal of Tsinghua University: Science and Technology, 2013, 3(12): 1699–1707.
    [10] 牛犇, 游伟, 汤红波. 基于安全信任的网络切片部署策略研究[J]. 计算机应用研究, 2019, 36(2): 574–579.

    NIU Ben, YOU Wei, and TANG Hongbo. Research on network slicing deployment strategy based on security trust[J]. Application Research of Computers, 2019, 36(2): 574–579.
    [11] GUAN Wanqing, WEN Xiangming, WANG Luhan, et al. A service-oriented deployment policy of end-to-end network slicing based on complex network theory[J]. IEEE Access, 2018, 6: 19691–19701. doi: 10.1109/ACCESS.2018.2822398
    [12] 管婉青. 基于多层复杂网络理论的网络切片协作管理研究[D]. [博士论文], 北京邮电大学, 2019

    GUAN Wanqing. Research on cooperative management of network slicing based on multilayer complex network theory[D]. [Ph.D. dissertation], Beijing University of Posts and Telecommunications, 2019.
    [13] 张子超, 郝蔚琳, 张伊凡. 一种复杂网络中节点安全重要性排序的度量方法[J]. 信息安全学报, 2019, 4(1): 79–88.

    ZHANG Zichao, HAO Weilin, and ZHANG Yifan. A measure approach for ranking the security importance of node security importance in complex network[J]. Journal of Cyber Security, 2019, 4(1): 79–88.
    [14] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35–41. doi: 10.2307/3033543
    [15] 荣莉莉, 郭天柱, 王建伟. 复杂网络节点中心性[J]. 上海理工大学学报, 2008, 30(3): 227–230, 236. doi: 10.3969/j.issn.1007-6735.2008.03.005

    RONG Lili, GUO Tianzhu, and WANG Jianwei. Centralities of nodes in complex networks[J]. Journal of University of Shanghai for Science and Technology, 2008, 30(3): 227–230, 236. doi: 10.3969/j.issn.1007-6735.2008.03.005
    [16] ABBASI A N and HE Mingyi. Convolutional neural network with PCA and batch normalization for hyperspectral image classification[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 959–962.
    [17] AKRAM V K, ASCI M, and DAGDEVIREN O. Design and analysis of a breadth first search based connectivity robustness estimation approach in wireless sensor networks[C]. 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 2018: 1–6.
    [18] HUANG Guanghao, LU Wei, XIE Jidong, et al. Improved route selection strategy based on K shortest path[C]. 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey, 2019: 1–4.
    [19] ITU. IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond[R]. ITU-R M.2083-0, 2015.
    [20] HARRINGTON P. Machine Learning in Action[M]. Beijing: The People’s Posts and Telecommunications Press, 2013: 15–31.
    [21] AARTS E and KORST J. Simulated Annealing and Boltzmann Machines[M]. New York: John Wiley &Sons, 1989: 173–198.
    [22] YU Cunqian, HOU Weigang, GUAN Yingying, et al. Virtual 5G network embedding in a heterogeneous and multi-domain network infrastructure[J]. China Communications, 2016, 13(10): 29–43. doi: 10.1109/CC.2016.7732010
    [23] MIJUMBI R, SERRAT J, GORRICHO J, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C]. The 2015 1st IEEE Conference on Network Softwarization (NetSoft), London, UK, 2015: 1–9.
    [24] YU Minlan, YI Y, REXFORD J, et al. Rethinking virtual network embedding: Substrate support for path splitting and migration[J]. ACM SIGCOMM Computer Communication Review, 2008, 38(2): 17–29. doi: 10.1145/1355734.1355737
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  1006
  • HTML全文浏览量:  542
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-07-11
  • 网络出版日期:  2021-08-20
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回