高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于凸松弛的图像选择性分割模型的快速算法

金正猛 连晓煜 杨天骥

金正猛, 连晓煜, 杨天骥. 基于凸松弛的图像选择性分割模型的快速算法[J]. 电子与信息学报, 2022, 44(7): 2522-2530. doi: 10.11999/JEIT210184
引用本文: 金正猛, 连晓煜, 杨天骥. 基于凸松弛的图像选择性分割模型的快速算法[J]. 电子与信息学报, 2022, 44(7): 2522-2530. doi: 10.11999/JEIT210184
JIN Zhengmeng, LIAN Xiaoyu, YANG Tianji. Fast Algorithm of Image Selective Segmentation Model Based on Convex Relaxation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2522-2530. doi: 10.11999/JEIT210184
Citation: JIN Zhengmeng, LIAN Xiaoyu, YANG Tianji. Fast Algorithm of Image Selective Segmentation Model Based on Convex Relaxation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2522-2530. doi: 10.11999/JEIT210184

基于凸松弛的图像选择性分割模型的快速算法

doi: 10.11999/JEIT210184
基金项目: 国家自然科学基金(11671004, 11771005)
详细信息
    作者简介:

    金正猛:男,1982年生,教授,主要研究方向为非线性偏微分方程及其在图像处理中的应用

    连晓煜:女,1994年生,硕士生,研究方向为非线性偏微分方程及其在图像处理中的应用

    杨天骥:男,1997年生,硕士生,研究方向为非线性偏微分方程及其在图像处理中的应用

    通讯作者:

    连晓煜 lianxiaoyujj@foxmail.com

  • 中图分类号: TN911.73

Fast Algorithm of Image Selective Segmentation Model Based on Convex Relaxation

Funds: The National Natural Science Foundation of China (11671004, 11771005)
  • 摘要: 针对基于测地距离的图像选择性分割模型非凸的缺陷,该文结合凸松弛方法,提出凸松弛的选择性分割模型,并通过证明,给出凸松弛模型的解与原模型解之间的关系。然后,应用交替方向乘子法(ADMM),设计凸松弛模型的数值求解算法,并给出了该算法的收敛性。数值实验结果表明:该文所提算法的收敛速度不仅大大优于求解原模型的加性算子分裂算法,而且分割结果也更精确。
  • 图  1  不同初始轮廓下的分割结果

    图  2  不同算法对MR脑图像白质的分割结果

    图  3  不同算法对不同噪声图像的分割结果

    图  4  不同算法对CT图像的分割结果

    图  5  不同算法对灰度不均匀图像的分割结果

    表  1  本文算法的求解流程

     初始赋值:${{\boldsymbol{d}}^0} = 0$,${{\boldsymbol{\lambda}} ^0} = 0$,$ {u^0} $取决于标记集$ M $
     迭代:更新$ {u^{k + 1}} $,${{\boldsymbol{d}}^{k + 1} }$,${{\boldsymbol{\lambda}} ^{k + 1} }$
     ${ {\boldsymbol{d} }^{k + 1} } = {\text{shrink} }\left(\nabla {u^k} + \dfrac{ { {{\boldsymbol{\lambda}} ^k} } }{\beta },\beta \right)$,
     ${u^{k + \frac{1}{2} } } = {\text{GS} }({{\boldsymbol{d}}^{k + 1} },{{\boldsymbol{\lambda}} ^k})$,${u^{k + 1} } = \Pr {\text{o} }{ {\text{j} }_\varGamma }({u^{k + \frac{1}{2} } })$,
     ${ {\boldsymbol{\lambda} } ^{k + 1} } = { {\boldsymbol{\lambda} } ^k} + \beta (\nabla {u^{k + 1} } - {{\boldsymbol{d}}^{k + 1} })$,
     ${\varSigma ^{ {\text{k} } + 1} } = \left\{ {x \in \varOmega |{u^{k + 1} }(x) \ge \xi } \right\}$对于任意$ \xi \in [0,1] $,
     ${c_1}^{k + 1} = \dfrac{ {\displaystyle\int\limits_\varOmega {z{u^{k + 1} }{\rm{d}}\varOmega } } }{ {\displaystyle\int\limits_\varOmega { {u^{k + 1} }{\rm{d}}\varOmega } } }$ ,${c_2}^{k + 1} = \dfrac{ {\displaystyle\int\limits_\varOmega {z(1 - {u^{k + 1} }){\rm{d}}\varOmega } } }{ {\displaystyle\int\limits_\varOmega {(1 - {u^{k + 1} }){\rm{d}}\varOmega } } }$,
     迭代终止条件:$\dfrac{{{\text{||}}{u^{k + 1}} - {u^k}||}}{{||{u^k}||}} \lt {\text{Tol}}$。
    下载: 导出CSV

    表  2  本文算法分割图像的参数$ {\lambda _1} $, $ {\lambda _2} $$ \theta $的值

    参数图2图3图4图5
    行1行2行3行1行2行3行1行2行3行1行2
    $ {\lambda _1} $,$ {\lambda _2} $10131366722255
    $ \theta $32394110131111018518067
    下载: 导出CSV

    表  3  图2中分割结果的DSC(%)、HD值、迭代收敛步数及收敛时间(s)

    图像脑部图1脑部图2脑部图3
    DSCHD迭代收敛步数收敛时间DSCHD迭代收敛步数收敛时间DSCHD迭代收敛步数收敛时间
    BC算法77.783.8190400112.3176.984.2858380107.5774.953.7832380106.14
    SC算法92.482.215548473.0085.623.125950074.8686.412.743750084.63
    CRCI算法94.621.700060088.8593.032.1251478378.4692.871.852361989.45
    本文算法96.361.2660247.7794.401.82163812.1693.911.67283210.03
    下载: 导出CSV

    表  4  图3中分割结果的DSC(%)、HD值、迭代收敛步数及收敛时间(s)

    图像σ=0.01σ=0.02σ=0.03
    DSCHD迭代收敛步数收敛时间DSCHD迭代收敛步数收敛时间DSCHD迭代收敛步数收敛时间
    BC算法88.920.994018045.4088.671.091733097.9488.281.2310600153.86
    SC算法93.972.2062715107.6283.542.0744850121.2992.532.5350900126.69
    CRCI算法96.431.107345064.4496.331.107345062.4496.391.174628143.07
    本文算法96.431.08703613.2196.381.1336349.1396.431.09904111.43
    下载: 导出CSV

    表  5  图4中分割结果的DSC(%)、HD值、迭代收敛步数及收敛时间(s)

    图像CT图像1CT图像2CT图像3
    DSCHD迭代收敛步数收敛时间DSCHD迭代收敛步数收敛时间DSCHD迭代收敛步数收敛时间
    BC算法84.991.57632510.2069.111.8017207.2975.730.8411186.79
    SC算法97.330.636672096.0690.370.42131050147.8095.000.1860850111.86
    CRCI算法97.080.6119912129.5186.270.17294797800.8395.550.17191787313.94
    本文算法98.390.59687520.1297.900.29296617.0898.250.12845413.88
    下载: 导出CSV

    表  6  图5中分割结果的DSC(%)、HD值、迭代收敛步数及收敛时间(s)

    图像真实图像1真实图像2
    DSCHD迭代收敛步数收敛时间DSCHD迭代收敛步数收敛时间
    BC算法98.520.529830089.1398.100.663110022.20
    SC算法90.481.707070097.1581.032.5656800114.58
    CRCI算法97.800.689633547.7797.610.728417418.78
    本文算法98.060.63044311.2098.000.6961206.54
    下载: 导出CSV
  • [1] KASS M, WITKIN A, and TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321–331. doi: 10.1007/BF00133570
    [2] CASELLES V, KIMMEL R, and SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61–79. doi: 10.1023/A:1007979827043
    [3] MUMFORD D and SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577–685. doi: 10.1002/cpa.3160420503
    [4] CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266–277. doi: 10.1109/83.902291
    [5] BADSHAH N and CHEN Ke. Image selective segmentation under geometrical constraints using an active contour approach[J]. Communications in Computational Physics, 2010, 7(4): 759–778. doi: 10.4208/cicp.2009.09.026
    [6] LE GUYADER C and GOUT C. Geodesic active contour under geometrical conditions: Theory and 3D applications[J]. Numerical Algorithms, 2008, 48(1/3): 105–133. doi: 10.1007/s11075-008-9174-y
    [7] RADA L and CHEN Ke. Improved selective segmentation model using one level-set[J]. Journal of Algorithms & Computational Technology, 2013, 7(4): 509–540. doi: 10.1260/1748-3018.7.4.509
    [8] SPENCER J and CHEN Ke. A convex and selective variational model for image segmentation[J]. Communications in Mathematical Sciences, 2015, 13(6): 1453–1472. doi: 10.4310/CMS.2015.v13.n6.a5
    [9] ROBERTS M, CHEN Ke, and IRION K L. A convex geodesic selective model for image segmentation[J]. Journal of Mathematical Imaging and Vision, 2019, 61(4): 482–503. doi: 10.1007/s10851-018-0857-2
    [10] ALI H, FAISAL S, CHEN Ke, et al. Image-selective segmentation model for multi-regions within the object of interest with application to medical disease[J]. The Visual Computer, 2021, 37(5): 939–955. doi: 10.1007/s00371-020-01845-1
    [11] KAPURIYA B R, PRADHAN D, and SHARMA R. Geometric constraints based selective segmentation for vector valued images[C]. The IEEE 2020 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2020: 1–5.
    [12] ZHANG Jianjun and NAGY J G. An effective alternating direction method of multipliers for color image restoration[J]. Applied Numerical Mathematics, 2021, 164: 43–56. doi: 10.1016/j.apnum.2020.07.008
    [13] PADCHAROEN A, KITKUAN D, KUMAM P, et al. Accelerated alternating minimization algorithm for Poisson noisy image recovery[J]. Inverse Problems in Science and Engineering, 2020, 28(7): 1031–1056. doi: 10.1080/17415977.2019.1709454
    [14] CHAN T F, ESEDOGLU S, and NIKOLOVA M. Algorithms for finding global minimizers of image segmentation and denoising models[J]. SIAM Journal on Applied Mathematics, 2006, 66(5): 1632–1648. doi: 10.1137/040615286
    [15] VAASSEN F, HAZELAAR C, VANIQUI A, et al. Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy[J]. Physics and Imaging in Radiation Oncology, 2020, 13: 1–6. doi: 10.1016/j.phro.2019.12.001
    [16] LIU Qiong, PENG Hao, CHEN Jifeng, et al. Design and implementation of parallel algorithm for image matching based on Hausdorff Distance[J]. Microprocessors and Microsystems, 2021, 82: 103919. doi: 10.1016/j.micpro.2021.103919
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  193
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2022-03-07
  • 录用日期:  2022-03-07
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回