Modeling and Analysis of Sea-clutter Signal for Wide-band Radar Based on Electromagnetic Model
-
摘要: 该文针对时变海洋面雷达回波信号模拟问题,建立了一种包含电磁散射机理与雷达波形调制特征的海杂波雷达回波信号模型。该模型首先建立一组具有时变特征的海面几何样本,通过对改进双尺度面元模型的加速处理,实现各时刻海面散射数据的高效模拟,并通过与测试数据的对比证实了电磁计算方法的准确性,然后采用子脉冲形式建立宽带回波信号模型,并以各面元散射数据代替其复幅度从而完成雷达回波信号建模。通过仿真验证了模型的合理性与高效性,对海杂波数据的统计分析展示了脉冲压缩处理对杂波的抑制效果。该海杂波模型既考虑了海洋的复杂散射机理与运动特性,又具有一般宽带信号的形式,因此可同时为海洋散射现象的解释和信号处理算法的分析提供完备数据源。Abstract: For the radar signals simulations of time-varying ocean surface, a radar signal model of sea clutter incorporating the electromagnetic scattering mechanism and radar signal modulation characteristics is developed. First, a set of time-varying sea surface geometric samples are constructed, and an efficient simulation of sea scattering at each time is performed by accelerating the calculation of the improved facet-based two-scale model, and the accuracy of the electromagnetic calculation method is demonstrated by comparing with the measured data. Then the band-wide echo signal model is established in the form of sub-pulse, and the scattering data of each surface element is replaced with its complex amplitude to complete the radar signal modeling. In simulations, the rationality and efficiency of the electromagnetic model are verified, and the statistical analysis of sea clutter data shows the effect of pulse compression on clutter suppression. This sea clutter model not only takes into account of the complex scattering mechanism and motion characteristics of the ocean, but also has the form of a general band-wide signal, so it can provide comprehensive source data for the interpretation of ocean scattering phenomena and the analysis of signal processing algorithms.
-
Key words:
- Wide band radar /
- Electromagnetic scattering /
- Sea clutter /
- Facet-based two scale model
-
表 1 仿真参数与计算时间
面元模型 粗糙面尺寸(m2) 面元尺寸(m) 计算时间(s) 传统双尺度 200×200 0.5 136 改进双尺度 200×200 2 134 本文模型 200×200 2 36 -
[1] 王勇, 许小剑. 海上舰船目标的宽带雷达散射特征信号仿真[J]. 航空学报, 2009, 30(2): 337–342. doi: 10.3321/j.issn:1000-6893.2009.02.024WANG Yong and XU Xiaojian. On wideband radar signature simulation of ships over sea surface[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(2): 337–342. doi: 10.3321/j.issn:1000-6893.2009.02.024 [2] 齐聪慧. 动态海面及其上方目标的电磁散射建模与回波特性分析[D]. [博士论文], 电子科技大学, 2015.QI Conghui. Charecteristics analyses and electromagnetic modeling of scattering from time-evolving sea surface and target[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2015. [3] 刘万萌, 童创明, 王童, 等. 基于电磁散射模型的宽带雷达海杂波特性分析[J]. 空军工程大学学报:自然科学版, 2017, 18(6): 58–63. doi: 10.3969/j.issn.1009-3516.2017.06.010LIU Wanmeng, TONG Chuangming, WANG Tong, et al. Research on the characteristics of wideband radar sea clutter based on the scattering model[J]. Journal of Air Force Engineering University:Natural Science Edition, 2017, 18(6): 58–63. doi: 10.3969/j.issn.1009-3516.2017.06.010 [4] YANG Pengcheng, LYU Xiaode, CHAI Zhihai, et al. Clutter cancellation along the clutter ridge for airborne passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 951–955. doi: 10.1109/LGRS.2017.2689076 [5] WANG Zetao, WANG Yongliang, GAO Fei, et al. Clutter nulling space-time adaptive processing algorithm based on sparse representation for airborne radar[J]. IET Radar, Sonar & Navigation, 2017, 11(1): 177–184. doi: 10.1049/iet-rsn.2016.0118 [6] ROSENBERG L, WATTS S, and GRECO M S. Modeling the statistics of microwave radar sea clutter[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(10): 44–75. doi: 10.1109/MAES.2019.2901562 [7] ANGELLIAUME S, ROSENBERG L, and RITCHIE M. Modeling the amplitude distribution of radar sea clutter[J]. Remote Sensing, 2019, 11(3): 319. doi: 10.3390/rs11030319 [8] 张西川, 谢文冲, 张永顺, 等. 任意波形相关性的机载MIMO雷达杂波建模与分析[J]. 电子与信息学报, 2011, 33(3): 646–651. doi: 10.3724/SP.J.1146.2010.00416ZHANG Xichuan, XIE Wenchong, ZHANG Yongshun, et al. Modeling and analysis of the clutter on airborne MIMO radar with arbitrary waveform correlation[J]. Journal of Electronics &Information Technology, 2011, 33(3): 646–651. doi: 10.3724/SP.J.1146.2010.00416 [9] MCDONALD M and CERUTTI-MAORI D. Multi-phase centre coherent radar sea clutter modelling and simulation[J]. IET Radar, Sonar & Navigation, 2017, 11(9): 1359–1366. doi: 10.1049/iet-rsn.2016.0628 [10] 廖桂生, 许京伟, 李婕, 等. 弹载相控阵雷达系统设计与信号处理问题[J]. 航空兵器, 2017(1): 3–9. doi: 10.19297/j.cnki.41-1228/tj.2017.01.001LIAO Guisheng, XU Jingwei, LI Jie, et al. Key Issus on system design and signal processing for missile-borne phased array radar[J]. Aero Weaponry, 2017(1): 3–9. doi: 10.19297/j.cnki.41-1228/tj.2017.01.001 [11] XIN Zhihui, LIAO Guisheng, YANG Zhiwei, et al. A deterministic sea-clutter space–time model based on physical sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11): 6659–6673. doi: 10.1109/TGRS.2016.2587739 [12] KARAEV V, TITCHENKO Y, PANFILOVA M, et al. The Doppler spectrum of the microwave radar signal backscattered from the sea surface in terms of the modified Bragg scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 193–202. doi: 10.1109/TGRS.2019.2935343 [13] WEI Pengbo, ZHANG Min, NIE Ding, et al. Statistical realisation of CWMFSM for scattering simulation of space-time varying sea surface[J]. International Journal of Remote Sensing, 2019, 40(1): 332–345. doi: 10.1080/01431161.2018.1513663 [14] YANG Pengju and GUO Lixin. Doppler spectrum of polarimetric scattering field from two-dimensional time-varying nonlinear sea surfaces[J]. Waves in Random and Complex Media, 2016, 26(4): 516–534. doi: 10.1080/17455030.2016.1170228 [15] CHEN Junlong, ZHANG Min, WANG Jiakun, et al. Scattering and Doppler analysis for electrically large nonlinear sea surfaces: A field-based semi-deterministic model[J]. International Journal of Remote Sensing, 2017, 38(15): 4443–4458. doi: 10.1080/01431161.2017.1320446 [16] SOFIANI R, HEIDAR H, and KAZEROONI M. An efficient raw data simulation algorithm for large complex marine targets and extended sea clutter in spotlight SAR[J]. Microwave and Optical Technology Letters, 2018, 60(5): 1223–1230. doi: 10.1002/mop.31143 [17] DELL’AGLIO D A G, DI MARTINO G, IODICE A, et al. A unified formulation of SAR raw signals from extended scenes for all acquisition modes with application to simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4956–4967. doi: 10.1109/TGRS.2018.2844094 [18] WANG Tong and TONG Chuangming. An analytical model of double scattering for SAR imaging of urban structures[J]. Optik, 2018, 171: 484–491. doi: 10.1016/j.ijleo.2018.06.084 [19] 王童, 童创明, 李西敏, 等. 海洋粗糙面全极化电磁散射特性研究[J]. 电子与信息学报, 2018, 40(6): 1412–1418. doi: 10.11999/JEIT170924WANG Tong, TONG Chuangming, LI Ximin, et al. Research on the full polarimetric electromagnetic scattering characteristics of ocean rough surface[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1412–1418. doi: 10.11999/JEIT170924 [20] WANG Tong and TONG Chuangming. An improved facet-based TSM for electromagnetic scattering from ocean surface[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 644–648. doi: 10.1109/LGRS.2018.2810308 [21] ELFOUHAILY T, CHAPRON B, KATSAROS K, et al. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research:Oceans, 1997, 102(C7): 15781–15796. doi: 10.1029/97JC00467 [22] 任新成, 刘鹏, 朱小敏, 等. 土壤表面与置于其上组合目标复合电磁散射特性研究[J]. 电子与信息学报, 2020, 42(11): 2629–2635. doi: 10.11999/JEIT190645REN Xincheng, LIU Peng, ZHU Xiaomin, et al. Study on the characteristics of composite electromagnetic scattering from soil surface and combinatorial target placed on it[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2629–2635. doi: 10.11999/JEIT190645 [23] VORONOVICH A G and ZAVOROTNY V U. Theoretical model for scattering of radar signals in K u- and C-bands from a rough sea surface with breaking waves[J]. Waves in Random Media, 2001, 11(3): 247–269. doi: 10.1080/13616670109409784