高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达辐射源个体识别综述

史亚 张文博 朱明哲 王磊 徐胜军

史亚, 张文博, 朱明哲, 王磊, 徐胜军. 雷达辐射源个体识别综述[J]. 电子与信息学报, 2022, 44(6): 2216-2229. doi: 10.11999/JEIT210161
引用本文: 史亚, 张文博, 朱明哲, 王磊, 徐胜军. 雷达辐射源个体识别综述[J]. 电子与信息学报, 2022, 44(6): 2216-2229. doi: 10.11999/JEIT210161
SHI Ya, ZHANG Wenbo, ZHU Mingzhe, WANG Lei, XU Shengjun. Specific Radar Emitter Identification: A Comprehensive Review[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2216-2229. doi: 10.11999/JEIT210161
Citation: SHI Ya, ZHANG Wenbo, ZHU Mingzhe, WANG Lei, XU Shengjun. Specific Radar Emitter Identification: A Comprehensive Review[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2216-2229. doi: 10.11999/JEIT210161

雷达辐射源个体识别综述

doi: 10.11999/JEIT210161
基金项目: 国家自然科学基金(61803293, 61501357, 61301286, 61203137),陕西省自然科学基础研究计划(2019JQ760)
详细信息
    作者简介:

    史亚:女,1985年生,博士,讲师,研究方向为机器学习、雷达辐射源识别

    张文博:男,1985年生,博士,副教授,研究方向为人工智能、辐射源识别

    朱明哲:男,1982年生,博士,副教授,研究方向为非平稳信号处理

    王磊:男,1979年生,博士,副教授,研究方向为信号处理、机器学习、雷达对抗等

    徐胜军:男,1976年生,博士,副教授,研究方向为视觉感知、人工智能与智动化系统等

    通讯作者:

    史亚 shiyaworld@163.com

  • 中图分类号: TN974

Specific Radar Emitter Identification: A Comprehensive Review

Funds: The National Natural Science Foundation of China (61803293, 61501357, 61301286, 61203137), The Natural Science Basic Research Plan in Shaanxi Province of China (2019JQ760)
  • 摘要: 雷达辐射源个体识别通过提取个体特征来辨识雷达个体,是电子对抗领域的热点研究方向。近年来随着深度学习的飞速发展及其在各领域的成功应用,基于深度学习的雷达辐射源个体识别成为焦点。虽然研究多年,成果丰富,但目前尚缺少关于该方向全面、细致的综述。基于此,该文从雷达辐射源个体特征机理分析、基于手工特征的识别方法、基于深度学习的识别方法以及数据集构建4个方面着手,对雷达辐射源个体识别开展系统的综述工作,并对当前现状和未来方向进行总结与展望,旨在推动雷达辐射源个体识别理论和方法研究的新发展。
  • 图  1  雷达辐射源个体识别系统框图

    图  2  基于深度学习的雷达辐射源识别方法示意图

    表  1  雷达辐射源信号手工特征提取方法汇总

    特征域手工特征代表文献(年份:参考文献编号)
    时域UAMOP曲线、瞬时幅度波形、包络2005: [39]; 2011: [36]; 2013: [21]; 2015: [42]; 2016: [41]
    UFMOP曲线、瞬时频率波形、UPMOP曲线2004: [30]; 2005: [39]; 2012: [38]; 2013: [21]; 2015: [42]; 2016: [41]; 2020: [40]
    频率偏差曲线、频率漂移曲线1993: [8]; 2018: [43]
    频域载频均值与方差/偏移值、频谱2005: [14]; 2011: [6]; 2012: [20]; 2020: [48]
    功率谱密度、频域分布密度、频谱非对称特征2011: [6]; 2016: [31]; 2017: [47]
    双谱能量幅度与频率、双谱幅度谱及其截面2005: [14]; 2019: [49]
    双谱对角切片/对角积分/围线积分/拉东变换2008: [34]; 2012: [20]; 2015: [51]; 2019:[50]; 2020: [52]
    双谱2维降维、双谱第1象限、循环谱(双谱)2011: [36]; 2018: [53]; 2019: [50]; 2020: [54,55]
    时频域短时傅里叶变换、小波变换、小波包变换2003: [29]; 2005: [14,61]; 2010: [33]; 2017: [56]; 2018: [13,57,58,60]; 2019: [59,62]
    同步压缩变换、双线性时频分布(Cohen类)1994: [27]; 2003: [29]; 2019:[50]; 2020: [63,64]
    模糊函数2008: [65]; 2009: [35]; 2011: [6]; 2017: [67]; 2018: [66]; 2020: [68]
    稀疏时频分析、经验模态分解2009: [69]; 2012: [70]; 2019: [71]
    固有时间尺度分解、变分模态分解2019: [72]; 2020: [32,73]
    其他包络瞬态特征及其相关特征2004: [30]; 2005:[14]; 2010: [46]; 2018: [45]; 2020: [44,74]
    自激指数、频推系数、相空间特征、分形特征2007: [3]; 2008: [4]; 2017: [75]
    下载: 导出CSV

    表  2  基于深度学习的雷达辐射源个体识别方法汇总

    深度模型代表文献(年份:参考文献编号)
    深度RBM网络2016: [22]; 2018: [57]; 2019: [44]; 2020: [52,68]
    深度AE网络2017: [56]; 2018: [60]; 2020: [63]
    1维卷积网络2017: [67]; 2018: [45,86]; 2020: [48,87,88]
    2维卷积网络2018: [15,58,90]; 2020: [89,91]
    混合深度网络2019: [59]; 2020: [40]
    对抗网络2020: [54,55,93]
    下载: 导出CSV
  • [1] TALBOT K I, DULEY P R, and HYATT M H. Specific emitter identification and verification[J]. Technology Review Journal, 2003, 1(1): 113–133.
    [2] LIU Mingwei and DOHERTY J. Nonlinearity estimation for specific emitter identification in multipath channels[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1076–1085. doi: 10.1109/TIFS.2011.2134848
    [3] CARROLL T L. A nonlinear dynamics method for signal identification[J]. Chaos, 2007, 17(2): 023109. doi: 10.1063/1.2722870
    [4] 许丹. 辐射源指纹机理及识别方法研究[D]. [博士论文], 国防科学技术大学, 2008.

    XU Dan. Research on mechanism and methodology of specific emitter identification[D]. [Ph. D. dissertation], National University of Defense Technology, 2008.
    [5] WILEY R G. ELINT: The Interception and Analysis of Radar Signals[M]. Boston: Artech House, 2006.
    [6] 王磊. 雷达辐射源个体识别的方法研究[D]. [博士论文], 西安电子科技大学, 2011.

    WANG Lei. On methods for specific radar emitter identification[D]. [Ph. D. dissertation], Xidian University, 2011.
    [7] DE YOUNG D, DAHLBURG J, BEVILACQUA R, et al. The U. S. naval research laboratory: Fulfilling the Roosevelts’ vision for American naval power (1923-2005)[R]. NRL/MR/1001--06-8951, 2006.
    [8] LANGLEY L E. Specific emitter identification (SEI) and classical parameter fusion technology[C]. WESCON '93, San Francisco, USA, 1993: 377–381.
    [9] 刘博. 辐射源个体识别技术的发展现状及应用建议[J]. 电子信息对抗技术, 2019, 34(4): 40–43. doi: 10.3969/j.issn.1674-2230.2019.04.008

    LIU Bo. Development and application suggestion on technology of specific emitter identification[J]. Electronic Information Warfare Technology, 2019, 34(4): 40–43. doi: 10.3969/j.issn.1674-2230.2019.04.008
    [10] 刘刚. 雷达指纹分析的基本理论探讨[J]. 电子对抗, 2002(6): 1–6.

    LIU Gang. Basic discussion on radar fingerprint analysis[J]. Electronic Warfare, 2002(6): 1–6.
    [11] 周一宇, 安玮, 郭福成, 等. 电子对抗原理与技术[M]. 北京: 电子工业出版社, 2014: 235.

    ZHOU Yiyu, AN Wei, GUO Fucheng, et al. Principles and Technologies of Electronic Warfare System[M]. Beijing: Publishing House of Electronics Industry, 2014: 235.
    [12] ZHAO Shiqiang, ZENG Deguo, WANG Wenhai, et al. Mutation grey wolf elite PSO balanced XGBoost for radar emitter individual identification based on measured signals[J]. Measurement, 2020, 159: 107777. doi: 10.1016/j.measurement.2020.107777
    [13] LIU Shaokun, YAN Xiaopeng, LI Ping, et al. Radar emitter recognition based on SIFT position and scale features[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2018, 65(12): 2062–2066. doi: 10.1109/TCSII.2018.2819666
    [14] 张国柱. 雷达辐射源识别技术研究[D]. [博士论文], 国防科学技术大学. 2005.

    ZHANG Guozhu. Research on emitter identification[D]. [Ph. D. dissertation], National University of Defense Technology, 2005.
    [15] QU Zhiyu, MAO Xiaojie, and DENG Zhi’an. Radar signal intra-pulse modulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6: 43874–43884. doi: 10.1109/ACCESS.2018.2864347
    [16] 张葛祥. 雷达辐射源信号智能识别方法研究[D]. [博士论文], 西南交通大学, 2005.

    ZHANG Gexiang. Intelligent recognition methods for radar emitter signals[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2005.
    [17] 周志文, 黄高明, 陈海洋, 等. 雷达辐射源识别算法综述[J]. 电讯技术, 2017, 57(8): 973–980. doi: 10.3969/j.issn.1001-893x.2017.08.020

    ZHOU Zhiwen, HUANG Gaoming, CHEN Haiyang, et al. An overview of radar emitter recognition algorithms[J]. Telecommunication Engineering, 2017, 57(8): 973–980. doi: 10.3969/j.issn.1001-893x.2017.08.020
    [18] 姜秋喜, 潘继飞, 陈晟. 雷达辐射源识别相关技术综述[J]. 电子对抗, 2012(2): 1–6.

    JIANG Qiuxi, PAN Jifei, and CHEN Sheng. Overview of radar emitter identification techniques[J]. Electronic Warfare, 2012(2): 1–6.
    [19] ZHANG Ming, DIAO Ming, GAO Lipeng, et al. Neural networks for radar waveform recognition[J]. Symmetry, 2017, 9(5): 75. doi: 10.3390/sym9050075
    [20] 蒋鹏. 雷达信号细微特征分析与识别[D]. [博士论文], 哈尔滨工程大学, 2012.

    JIANG Peng. Subtle characteristic analysis and recognition of radar signals[D]. [Ph. D. dissertation], Harbin Engineering University, 2012.
    [21] 韩韬. 脉冲信号辐射源个体识别技术研究[D]. [博士论文], 国防科学技术大学, 2013.

    HAN Tao. Research on the techniques of specific emitter identification for pulse signals[D]. [Ph. D. dissertation], National University of Defense Technology, 2013.
    [22] 周东青, 王玉冰, 王星, 等. 基于深度限制波尔兹曼机的辐射源信号识别[J]. 国防科技大学学报, 2016, 38(6): 136–141. doi: 10.11887/j.cn.201606022

    ZHOU Dongqing, WANG Yubing, WANG Xing, et al. Radar emitter signal recognition based on deep restricted Boltzmann machine[J]. Journal of National University of Defense Technology, 2016, 38(6): 136–141. doi: 10.11887/j.cn.201606022
    [23] LECUN Y, BENGIO Y, and HINTON G. Deep Learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [24] RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9): 146–152. doi: 10.1109/MCOM.2018.1800153
    [25] 国强. 雷达信号分选理论研究[M]. 北京: 科学出版社, 2010.

    GUO Qiang. Research on the Theory of Radar Signal Sorting[M]. Beijing: Science China Press, 2010.
    [26] 孙丽婷, 黄知涛, 王翔, 等. 辐射源指纹特征提取方法述评[J]. 雷达学报, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115

    SUN Liting, HUANG Zhitao, WANG Xiang, et al. Overview of radio frequency fingerprint extraction in specific emitter identification[J]. Journal of Radars, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115
    [27] 魏东升, 巫胜洪, 唐斌. 雷达信号脉内细微特征的研究[J]. 舰船科学技术, 1994(3): 23–30.
    [28] 肖先赐. 电子侦察中的关键技术[J]. 电子对抗, 1991(4): 1–6.
    [29] 解文斌. 脉冲信号的特征分析和辐射源识别研究[D]. [硕士论文], 国防科学技术大学, 2003.

    XIE Wenbin. The research of pulse signal features and emitter identification[D]. [Master dissertation], National University of Defense Technology, 2003.
    [30] KAWALEC A and OWCZAREK R. Specific emitter identification using intrapulse data[C]. IEEE 1st European Radar Conference, Amsterdam, Netherlands, 2004: 249–252.
    [31] RU Xiaohu, HUANG Zhitao, LIU Zheng, et al. Frequency-domain distribution and band-width of unintentional modulation on pulse[J]. Electronics Letters, 2016, 52(22): 1853–1855. doi: 10.1049/el.2016.0733
    [32] GOK G, ALP Y K, and ARIKAN O. A new method for specific emitter identification with results on real radar measurements[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3335–3346. doi: 10.1109/TIFS.2020.2988558
    [33] 余志斌. 基于脉内特征的雷达辐射源信号识别研究[D]. [博士论文], 西南交通大学, 2010.

    YU Zhibin. Study on radar emitter signal identification based on intra-pulse features[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2010.
    [34] CHEN Taowei, JIN Weidong, and LI Jie. Feature extraction using surrounding-line integral bispectrum for radar emitter signal[C]. IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008: 294–298.
    [35] 李林, 姬红兵. 基于模糊函数的雷达辐射源个体识别[J]. 电子与信息学报, 2009, 31(11): 2546–2551. doi: 10.3724/SP.J.1146.2008.01406

    LI Lin and JI Hongbing. Specific emitter identification based on ambiguity function[J]. Journal of Electronics &Information Technology, 2009, 31(11): 2546–2551. doi: 10.3724/SP.J.1146.2008.01406
    [36] LI Lin and JI Hongbing. Radar emitter recognition based on cyclostationary signatures and sequential iterative least-square estimation[J]. Expert Systems with Applications, 2011, 38(3): 2140–2147. doi: 10.1016/j.eswa.2010.07.155
    [37] 山世光, 阚美娜, 刘昕, 等. 深度学习: 多层神经网络的复兴与变革[J]. 科技导报, 2016, 34(14): 60–70. doi: 10.3981/j.issn.1000-7857.2016.14.007

    SHAN Shiguang, KAN Meina, LIU Xin, et al. Deep learning: The revival and transformation of multi layer neural networks[J]. Science &Technology Review, 2016, 34(14): 60–70. doi: 10.3981/j.issn.1000-7857.2016.14.007
    [38] 叶浩欢, 柳征, 姜文利. 考虑多普勒效应的脉冲无意调制特征比较[J]. 电子与信息学报, 2012, 34(11): 2654–2659. doi: 10.3724/SP.J.1146.2012.00400

    YE Haohuan, LIU Zheng, and JIANG Wenli. A comparison of unintentional modulation on pulse features with the consideration of Doppler effect[J]. Journal of Electronics &Information Technology, 2012, 34(11): 2654–2659. doi: 10.3724/SP.J.1146.2012.00400
    [39] LIU Jun, LEE J P Y, LI Lingjie, et al. Online clustering algorithms for radar emitter classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1185–1196. doi: 10.1109/TPAMI.2005.166
    [40] 秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084

    QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084
    [41] RU Xiaohu, YE Haohuan, LIU Zheng, et al. An experimental study on secondary radar transponder UMOP characteristics[C]. The 13th European Radar Conference, London, UK, 2016: 314–317.
    [42] 陈沛铂, 李纲. 应用动态时间规整算法实现雷达辐射源个体识别[J]. 信号处理, 2015, 31(8): 1035–1040. doi: 10.3969/j.issn.1003-0530.2015.08.021

    CHEN Peibo and LI Gang. Applying dynamic time warping algorithm to specific radar emitter identification[J]. Journal of Signal Processing, 2015, 31(8): 1035–1040. doi: 10.3969/j.issn.1003-0530.2015.08.021
    [43] ZHAO Y, WU L, ZHANG J, et al. Specific emitter identification using geometric features of frequency drift curve[J]. Bulletin of the Polish Academy of Sciences:Technical Sciences, 2018, 66(1): 99–108. doi: 10.24425/119063
    [44] 徐宇恒, 程嗣怡, 董晓璇, 等. 基于DBN特征提取的雷达辐射源个体识别[J]. 空军工程大学学报:自然科学版, 2020, 20(6): 91–96,108. doi: 10.3969/j.issn.1009-3516.2019.06.014

    XU Yuheng, CHENG Siyi, DONG Xiaoxuan, et al. Radar specific emitter identification based on DBN feature extraction[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 20(6): 91–96,108. doi: 10.3969/j.issn.1009-3516.2019.06.014
    [45] 冷鹏飞, 徐朝阳. 一种深度强化学习的雷达辐射源个体识别方法[J]. 兵工学报, 2018, 39(12): 2420–2426. doi: 10.3969/j.issn.1000-1093.2018.12.016

    LENG Pengfei and XU Chaoyang. Specific emitter identification based on deep reinforcement learning[J]. Acta Armamentarii, 2018, 39(12): 2420–2426. doi: 10.3969/j.issn.1000-1093.2018.12.016
    [46] 王宏伟, 赵国庆, 王玉军. 基于脉冲包络前沿高阶矩特征的辐射源个体识别[J]. 现代雷达, 2010, 32(10): 42–45,49. doi: 10.3969/j.issn.1004-7859.2010.10.010

    WANG Hongwei, ZHAO Guoqing, and WANG Yujun. Specific emitter identification based on higher order moment of the envelope’s front edge[J]. Modern Radar, 2010, 32(10): 42–45,49. doi: 10.3969/j.issn.1004-7859.2010.10.010
    [47] RU Xiaohu, LIU Zheng, HUANG Zhitao, et al. Evaluation of unintentional modulation for pulse compression signals based on spectrum asymmetry[J]. IET Radar, Sonar & Navigation, 2017, 11(4): 656–663. doi: 10.1049/iet-rsn.2016.0248
    [48] XIAO Yao and WEI Xizhang. Specific emitter identification of radar based on one dimensional convolution neural network[J]. Journal of Physics:Conference Series, 2020, 1550(3): 032114. doi: 10.1088/1742-6596/1550/3/032114
    [49] CAO Ru, CAO Jiuwen, MEI Jianping, et al. Radar emitter identification with bispectrum and hierarchical extreme learning machine[J]. Multimedia Tools and Applications, 2019, 78(20): 28953–28970. doi: 10.1007/s11042-018-6134-y
    [50] 胡德秀, 赵拥军, 陈世文, 等. 雷达辐射源信号分析与处理[M]. 北京: 清华大学出版社, 2019.

    HU Dexiu, ZHAO Yongjun, CHEN Shiwen, et al. Signal Analysis and Processing of Radar Emitter[M]. Beijing: Tsinghua University Press, 2019: 165.
    [51] 哈尔滨工业大学. 一种基于相位噪声无意调制特征的雷达辐射源识别方法[P]. 中国专利, 201510263140.2, 2015.

    Harbin Institute of Technology. Radar radiation source identification method based on phase noise unintentional modulation characteristic[P]. China Patent, 201510263140.2, 2015.
    [52] ZHOU Yipeng, WANG Xing, CHEN You, et al. Specific emitter identification via bispectrum-radon transform and hybrid deep model[J]. Mathematical Problems in Engineering, 2020, 2020: 7646527. doi: 10.1155/2020/7646527
    [53] DING Lida, WANG Shilian, WANG Fanggang, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591–2594. doi: 10.1109/LCOMM.2018.2871465
    [54] CHEN Peibo, GUO Yulan, LI Gang, et al. Adversarial shared-private networks for specific emitter identification[J]. Electronics Letters, 2020, 56(6): 296–299. doi: 10.1049/el.2019.3207
    [55] CHEN Peibo, GUO Yulan, LI Gang, et al. Discriminative adversarial networks for specific emitter identification[J]. Electronics Letters, 2020, 56(9): 438–441. doi: 10.1049/el.2020.0116
    [56] 周志文, 黄高明, 高俊, 等. 一种深度学习的雷达辐射源识别算法[J]. 西安电子科技大学学报:自然科学版, 2017, 44(3): 77–82. doi: 10.3969/j.issn.1001-2400.2017.03.014

    ZHOU Zhiwen, HUANG Gaoming, GAO Jun, et al. Radar emitter identification algorithm based on deep learning[J]. Journal of Xidian University, 2017, 44(3): 77–82. doi: 10.3969/j.issn.1001-2400.2017.03.014
    [57] WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the energy cumulant of short time Fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18(9): 3103. doi: 10.3390/s18093103
    [58] KONG Mingxin, ZHANG Jing, LIU Weifeng, et al. Radar emitter identification based on deep convolutional neural network[C]. International Conference on Control, Automation and Information Sciences, Hangzhou, China, 2018: 309–314.
    [59] 叶文强, 俞志富, 张奎. 基于DAE+CNN辐射源信号识别算法[J]. 计算机应用研究, 2019, 36(12): 3815–3818. doi: 10.19734/j.issn.1001-3695.2018.07.0409

    YE Wenqiang, YU Zhifu, and ZHANG Kui. Recognition algorithm of emitter signal based on DAE+CNN[J]. Application Research of Computers, 2019, 36(12): 3815–3818. doi: 10.19734/j.issn.1001-3695.2018.07.0409
    [60] 黄颖坤, 金炜东, 余志斌, 等. 基于深度学习和集成学习的辐射源信号识别[J]. 系统工程与电子技术, 2018, 40(11): 2420–2425. doi: 10.3969/j.issn.1001-506X.2018.11.05

    HUANG Yingkun, JIN Weidong, YU Zhibin, et al. Radar emitter signal recognition based on deep learning and ensemble learning[J]. Systems Engineering and Electronics, 2018, 40(11): 2420–2425. doi: 10.3969/j.issn.1001-506X.2018.11.05
    [61] 柳征, 姜文利, 周一宇. 基于小波包变换的辐射源信号识别[J]. 信号处理, 2005, 21(5): 460–464.

    LIU Zheng, JIANG Wenli, and ZHOU Yiyu. Emitter signals recognition based on wavelet packet transform[J]. Signal Processing, 2005, 21(5): 460–464.
    [62] CAO Yang, BAI Jinliang, LI Hongbo, et al. Deep representation method for radar emitter signal using wavelet packets decomposition[J]. The Journal of Engineering, 2019, 2019(19): 6282–6286. doi: 10.1049/joe.2019.0256
    [63] ZHU Mingzhe, FENG Zhenpeng, ZHOU Xianda, et al. Specific emitter identification based on synchrosqueezing transform for civil radar[J]. Electronics, 2020, 9(4): 658. doi: 10.3390/electronics9040658
    [64] SEDDIGHI Z, AHMADZADEH M R, and TABAN M R. Radar signals classification using energy-time-frequency distribution features[J]. IET Radar, Sonar & Navigation, 2020, 14(5): 707–715. doi: 10.1049/iet-rsn.2019.0331
    [65] 普运伟, 金炜东, 朱明, 等. 雷达辐射源信号模糊函数主脊切面特征提取方法[J]. 红外与毫米波学报, 2008, 27(2): 133–137. doi: 10.3321/j.issn:1001-9014.2008.02.012

    PU Yunwei, JIN Weidong, ZHU Ming, et al. Extracting the main ridge slice characteristics of ambiguity function for radar emitter signals[J]. Journal of Infrared and Millimeter Waves, 2008, 27(2): 133–137. doi: 10.3321/j.issn:1001-9014.2008.02.012
    [66] 许程成, 周青松, 张剑云, 等. 导数约束平滑条件下基于模糊函数特征的雷达辐射源信号识别方法[J]. 电子学报, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018

    XU Chengcheng, ZHOU Qingsong, ZHANG Jianyun, et al. Radar emitter recognition based on ambiguity function features with derivative constraint on smoothing[J]. Acta Electronica Sinica, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018
    [67] 西北工业大学. 一种基于深度学习的雷达辐射源类别识别方法[P]. 中国专利, 201711145195.9, 2017.

    Northwestern Polytechnical University. Radar radiation source class identification method based on deep learning[P]. China Patent, 201711145195.9, 2017.
    [68] 董鹏宇, 王红卫, 陈游, 等. 基于模糊函数主脊切片和深度置信网络的雷达辐射源信号识别[J]. 空军工程大学学报:自然科学版, 2020, 21(2): 84–90. doi: 10.3969/j.issn.1009-3516.2020.02.013

    DONG Pengyu, WANG Hongwei, CHEN You, et al. A recognition method of radar emitter signals based on SVD of MRSAF and DBN[J]. Journal of Air Force Engineering University:Natural Science Edition, 2020, 21(2): 84–90. doi: 10.3969/j.issn.1009-3516.2020.02.013
    [69] 朱明, 金炜东, 胡来招. 一种基于Spectrum原子的雷达辐射源信号识别方法[J]. 电子与信息学报, 2009, 31(1): 188–191. doi: 10.3724/SP.J.1146.2007.01167

    ZHU Ming, JIN Weidong, and HU Laizhao. A novel method for radar emitter signals recognition based on spectrum atoms[J]. Journal of Electronics &Information Technology, 2009, 31(1): 188–191. doi: 10.3724/SP.J.1146.2007.01167
    [70] ZHU Bin and JIN Weidong. Radar emitter signal recognition based on EMD and neural network[J]. Journal of Computers, 2012, 7(6): 1413–1420. doi: 10.4304/jcp.7.6.1413-1420
    [71] ZHOU Zhiwen, ZHANG Jingke, and ZHANG Taotao. Specific emitter identification via feature extraction in Hilbert-Huang transform domain[J]. Progress in Electromagnetics Research, 2019, 82: 117–127. doi: 10.2528/PIERM19022502
    [72] LI Tianqi, ZHANG Yu, and YANG Xiaojing. An ITD-based method for individual recognition of secondary radar radiation source[C]. The 8th International Conference on Communications, Signal Processing, and Systems, Urumqi, China, 2019: 769–777.
    [73] HE Boxiang and WANG Fanggang. Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3791–3806. doi: 10.1109/TIFS.2020.3001721
    [74] GUO Shanzeng and TRACEY H. Discriminant analysis for radar signal classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 3134–3148. doi: 10.1109/TAES.2020.2965787
    [75] WU Longwen, ZHAO Yaqin, WANG Zhao, et al. Specific emitter identification using fractal features based on box-counting dimension and variance dimension[C]. IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, 2017: 226–231.
    [76] FERNÁNDEZ-DELGADO M, CERNADAS E, BARRO S, et al. Do we need hundreds of classifiers to solve real world classification problems?[J]. The Journal of Machine Learning Research, 2014, 15(1): 3133–3181. doi: 10.5555/2627435.2697065
    [77] WILLSON G B. Radar classification using a neural network[C]. Proceedings of the SPIE 1294, Applications of Artificial Neural Networks, Orlando, USA, 1990: 200–210.
    [78] ROE A L. Artificial neural networks for ESM emitter identification-an initial study[C]. IEE Colloquium on Neural Networks for Systems: Principles and Applications, London, UK, 1991: 4/1–4/3.
    [79] GRANGER E, RUBIN M A, GROSSBERG S, et al. A What-and-Where fusion neural network for recognition and tracking of multiple radar emitters[J]. Neural Networks, 2001, 14(3): 325–344. doi: 10.1016/S0893-6080(01)00019-3
    [80] SHIEH C S and LIN C T. A vector neural network for emitter identification[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(8): 1120–1127. doi: 10.1109/TAP.2002.801387
    [81] CHEN Wenbin, FU Kun, ZUO Jiawei, et al. Radar emitter classification for large data set based on weighted-xgboost[J]. IET Radar, Sonar & Navigation, 2017, 11(8): 1203–1207. doi: 10.1049/iet-rsn.2016.0632
    [82] 张文博. 多类别智能分类器方法研究[D]. [博士论文], 西安电子科技大学, 2014.

    ZHANG Wenbo. Research on intelligent classifiers for multi-class classification[D]. [Ph. D. dissertation], Xidian University, 2014.
    [83] 史亚, 姬红兵, 朱明哲, 等. 多核融合框架下的雷达辐射源个体识别[J]. 电子与信息学报, 2014, 36(10): 2484–2490. doi: 10.3724/SP.J.1146.2013.01698

    SHI Ya, JI Hongbing, ZHU Mingzhe, et al. Specific radar emitter identification in multiple kernel fusion framework[J]. Journal of Electronics &Information Technology, 2014, 36(10): 2484–2490. doi: 10.3724/SP.J.1146.2013.01698
    [84] SHI Ya and JI Hongbing. Kernel canonical correlation analysis for specific radar emitter identification[J]. Electronics Letters, 2014, 50(18): 1318–1320. doi: 10.1049/el.2014.1458
    [85] 贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899

    HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics &Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
    [86] SUN Jun, XU Guangluan, REN Wenjuan, et al. Radar emitter classification based on unidimensional convolutional neural network[J]. IET Radar, Sonar & Navigation, 2018, 12(8): 862–867. doi: 10.1049/iet-rsn.2017.0547
    [87] WU Bin, YUAN Shibo, LI Peng, et al. Radar emitter signal recognition based on one-dimensional convolutional neural network with attention mechanism[J]. Sensors, 2020, 20(21): 6350. doi: 10.3390/s20216350
    [88] 高欣宇, 张文博, 姬红兵, 等. 新型雷达辐射源识别[J]. 中国图象图形学报, 2020, 25(6): 1171–1179. doi: 10.11834/jig.190375

    GAO Xinyu, ZHANG Wenbo, JI Hongbing, et al. New radar emitter identification method[J]. Journal of Image and Graphics, 2020, 25(6): 1171–1179. doi: 10.11834/jig.190375
    [89] ZHU Mingzhe, FENG Zhenpeng, and ZHOU Xianda. A novel data-driven specific emitter identification feature based on machine cognition[J]. Electronics, 2020, 9(8): 1308. doi: 10.3390/electronics9081308
    [90] CAIN L, CLARK J, PAULS E, et al. Convolutional neural networks for radar emitter classification[C]. IEEE 8th Annual Computing and Communication Workshop and Conference, Las Vegas, USA, 2018: 79–83.
    [91] WANG Xuebao, HUANG Gaoming, MA Congshan, et al. Convolutional neural network applied to specific emitter identification based on pulse waveform images[J]. IET Radar, Sonar & Navigation, 2020, 14(5): 728–735. doi: 10.1049/iet-rsn.2019.0456
    [92] 王坤峰, 左旺孟, 谭营, 等. 生成式对抗网络: 从生成数据到创造智能[J]. 自动化学报, 2018, 44(5): 769–774. doi: 10.16383/j.aas.2018.y000001

    WANG Kunfeng, ZUO Wangmeng, TAN Ying, et al. Generative adversarial networks: From generating data to creating intelligence[J]. Acta Automatica Sinica, 2018, 44(5): 769–774. doi: 10.16383/j.aas.2018.y000001
    [93] GONG Jialiang, XU Xiaodong, and LEI Yingke. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2898–2913. doi: 10.1109/TIFS.2020.2978620
    [94] RAS G, XIE Ning, VAN GERVEN M, et al. Explainable deep learning: A field guide for the uninitiated[J]. Journal of Artificial Intelligence Research, 2022, 73: 329–396. doi: 10.1613/jair.1.13200
    [95] LU Jiang, GONG Pinghua, YE Jieping, et al. Learning from very few samples: A survey[J]. arXiv: 2009.02653, 2020.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  2755
  • HTML全文浏览量:  1512
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-04-26
  • 刊出日期:  2022-06-21

目录

    /

    返回文章
    返回