高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图强化典型相关分析及在图像识别中的应用

苏树智 谢军 平昕瑞 高鹏连

苏树智, 谢军, 平昕瑞, 高鹏连. 图强化典型相关分析及在图像识别中的应用[J]. 电子与信息学报, 2021, 43(11): 3342-3349. doi: 10.11999/JEIT210154
引用本文: 苏树智, 谢军, 平昕瑞, 高鹏连. 图强化典型相关分析及在图像识别中的应用[J]. 电子与信息学报, 2021, 43(11): 3342-3349. doi: 10.11999/JEIT210154
Shuzhi SU, Jun XIE, Xinrui PING, Penglian GAO. Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3342-3349. doi: 10.11999/JEIT210154
Citation: Shuzhi SU, Jun XIE, Xinrui PING, Penglian GAO. Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3342-3349. doi: 10.11999/JEIT210154

图强化典型相关分析及在图像识别中的应用

doi: 10.11999/JEIT210154
基金项目: 国家自然科学基金(61806006),中国博士后科学基金(2019M660149),合肥综合性国家科学中心能源研究院项目(19KZS203)
详细信息
    作者简介:

    苏树智:男,1987年生,副教授,研究方向为多模态模式识别

    谢军:男,1996年生,硕士生,研究方向为模式识别

    平昕瑞:男,1994年生,硕士生,研究方向为多模态信息融合、数据处理

    高鹏连:男,1996年生,硕士生,研究方向为模式识别

    通讯作者:

    苏树智 sushuzhi@foxmail.com

  • 中图分类号: TN911.73; TP391.4

Graph Enhanced Canonical Correlation Analysis and Its Application to Image Recognition

Funds: The National Natural Science Foundation of China (61806006), The China Postdoctoral Science Foundation (2019M660149), The Institute of Energy, Hefei Comprehensive National Science Center (19KZS203)
  • 摘要: 典型相关分析(CCA)作为一种传统特征提取算法已经成功应用于模式识别领域,其旨在找到使两组模态数据间相关性最大的投影方向,但其本身为一种无监督的线性方法,无法利用数据内在的几何结构和监督信息,难以处理高维非线性数据。为此该文提出一种新的非线性特征提取算法,即图强化典型相关分析(GECCA)。该算法利用数据中的不同成分构建多个成分图,有效保留了数据间的复杂流形结构,采用概率评估的方法使用类标签信息,并通过图强化的方式将几何流形和监督信息融合嵌入到典型相关分析框架。为了对该算法进行评估,分别在人脸和手写体数字数据集上设计了针对性实验,良好的实验结果显示出该算法在图像识别中的优势。
  • 图  1  成分图权重矩阵流程图

    图  2  XM2VTS部分人脸图像

    图  3  在XM2VTS人脸数据集上识别率随维度变化情况

    图  4  在Semeion数据集中每次随机实验的最佳识别率

    表  1  GECCA的算法步骤

     算法:图强化典型相关分析
     (1) 输入:{X,Y},CxCy
     (2)通过式(12)和式(13)构建图强化矩阵MxMy。利用式(16)构建类拉普拉斯矩阵Lx, Lx, Lxy Lyx
     (3)构建拉格朗日乘子函数:${\boldsymbol{F} }\left( { {\boldsymbol{\alpha} } ,{\boldsymbol{\beta} } } \right) = { {\boldsymbol{\alpha} } ^{\rm{T} } }{\boldsymbol{X} }{ {\boldsymbol{L} }_{ { {xy} } } }{ {\boldsymbol{Y} }^{\rm{T} } }{\boldsymbol{\beta} } - \dfrac{ { { {{\lambda } }_1} } }{2}\left( { { {\boldsymbol{\alpha} } ^{\rm{T} } }{\boldsymbol{X} }{ {\boldsymbol{L} }_{ { {xx} } } }{ {\boldsymbol{X} }^{\rm{T} } }{\boldsymbol{\alpha} } - 1} \right) - \dfrac{ { { {{\lambda } }_2} } }{2}\left( { { {\boldsymbol{\beta} } ^{\rm{T} } }{\boldsymbol{Y} }{ {\boldsymbol{L} }_{ { {yy} } } }{ {\boldsymbol{Y} }^{\rm{T} } }{\boldsymbol{\beta} } - 1} \right)$。
     (4)按照式(20)求出特征值λ和对应特征向量(αβ)。
     (5)取前d个特征值对应特征向量$\left\{ {\;{ {\left[ { {\boldsymbol{\alpha} } _{ {i} }^{\rm{T} },{\boldsymbol{\beta} } _{ {i} }^{\rm{T} } } \right]}^{\rm{T} } }\; \in { { \boldsymbol{R} }^{1 \times \left( { { {p} } + { {q} } } \right)} } } \right\}_{ { {i} } = 1}^{ {d} }$。
     (6)输出:${\boldsymbol{A} } = \left\{ { { {\boldsymbol{\alpha} } _1},{ {\boldsymbol{\alpha} } _2},...,{ {\boldsymbol{\alpha} } _{ {d} } } } \right\} \in { { \boldsymbol{R} }^{ { {p} } \times { {d} } } }$和${\boldsymbol{B} } = \left\{ { { {\boldsymbol{\beta} } _1},{ {\boldsymbol{\beta} } _2},\;...,{ {\boldsymbol{\beta} } _{ {d} } } } \right\} \in { { \boldsymbol{R} }^{ { {q} } \times { {d} } } }$。
    下载: 导出CSV

    表  2  在Semeion手写体数字数据集上的识别率及标准差

    40训练样本60训练样本80训练样本100训练样本
    GECCA86.93±0.9288.89±0.9890.69±0.7791.38±0.70
    DCCA85.72±1.0287.57±1.0489.14±0.8280.25±0.91
    ALPCCA80.82±0.7584.76±1.1987.92±0.7789.38±1.03
    LPCCA69.84±2.2474.83±1.5177.33±1.4780.56±2.10
    CCA74.20±0.8477.93±1.1980.92±0.8582.34±1.44
    A±BA表示平局识别率(%),B表示标准差
    下载: 导出CSV
  • [1] LIU Zhonghua, LAI Zhihui, OU Weihua, et al. Structured optimal graph based sparse feature extraction for semi-supervised learning[J]. Signal Processing, 2020, 170: 107456. doi: 10.1016/j.sigpro.2020.107456
    [2] 王肖锋, 孙明月, 葛为民. 基于图像协方差无关的增量特征提取方法研究[J]. 电子与信息学报, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138

    WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
    [3] YI Shuangyan, LAI Zhihui, HE Zhenyu, et al. Joint sparse principal component analysis[J]. Pattern Recognition, 2017, 61: 524–536. doi: 10.1016/j.patcog.2016.08.025
    [4] BRO R and SMILDE A K. Principal component analysis[J]. Analytical Methods, 2014, 6(9): 2812–2831. doi: 10.1039/C3AY41907J
    [5] 刘政怡, 段群涛, 石松, 等. 基于多模态特征融合监督的RGB-D图像显著性检测[J]. 电子与信息学报, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297

    LIU Zhengyi, DUAN Quntao, SHI Song, et al. RGB-D image saliency detection based on multi-modal feature-fused supervision[J]. Journal of Electronics &Information Technology, 2020, 42(4): 997–1004. doi: 10.11999/JEIT190297
    [6] 姜庆超, 颜学峰. 基于局部−整体相关特征的多单元化工过程分层监测[J]. 自动化学报, 2020, 46(9): 1770–1782.

    JIANG Qingchao and YAN Xuefeng. Hierarchical monitoring for multi-unit chemical processes based on local-global correlation features[J]. Acta Automatica Sinica, 2020, 46(9): 1770–1782.
    [7] YANG Xinghao, LIU Weifeng, LIU Wei, et al. A survey on canonical correlation analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2349–2368. doi: 10.1109/TKDE.2019.2958342
    [8] YANG Xinghao, LIU Weifeng, TAO Dapeng, et al. Canonical correlation analysis networks for two-view image recognition[J]. Information Sciences, 2017, 385/386: 338–352. doi: 10.1016/j.ins.2017.01.011
    [9] SHEN Xiaobo, SUN Quansen, and YUAN Yunhao. Orthogonal canonical correlation analysis and its application in feature fusion[C]. The 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 151–157.
    [10] EL MADANY N E D, HE Yifeng, and GUAN Ling. Human action recognition by fusing deep features with globality locality preserving canonical correlation analysis[C]. 2017 IEEE International Conference on Image Processing, Beijing, China, 2017: 2871–2875.
    [11] ELMADANY N E D, HE Yifeng, and GUAN Ling. Information fusion for human action recognition via biset/multiset globality locality preserving canonical correlation analysis[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5275–5287. doi: 10.1109/TIP.2018.2855438
    [12] WANG Fengshan and ZHANG Daoqiang. A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction[J]. Neural Processing Letters, 2013, 37(2): 135–146. doi: 10.1007/s11063-012-9238-9
    [13] GAO Xizhan, NIU Sujie, and SUN Quansen. Two-directional two-dimensional kernel canonical correlation analysis[J]. IEEE Signal Processing Letters, 2019, 26(11): 1578–1582. doi: 10.1109/LSP.2019.2939986
    [14] MELZER T, REITER M, and BISCHOF H. Appearance models based on kernel canonical correlation analysis[J]. Pattern Recognition, 2003, 36(9): 1961–1971. doi: 10.1016/S0031-3203(03)00058-X
    [15] SUN Tingkai, CHEN Songcan, YANG Jingyu, et al. A supervised combined feature extraction method for recognition[C]. The IEEE International Conference on Data Mining, Pisa, Italy, 2008: 1043–1048.
    [16] GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
    [17] CHEN Jia, WANG Gang, and GIANNAKIS G B. Graph multiview canonical correlation analysis[J]. IEEE Transactions on Signal Processing, 2019, 67(11): 2826–2838. doi: 10.1109/TSP.2019.2910475
    [18] CHEN Jia, WANG Gang, SHEN Yanning, et al. Canonical correlation analysis of datasets with a common source graph[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4398–4408. doi: 10.1109/TSP.2018.2853130
    [19] SU Shuzhi, FANG Xianjin, YANG Gaoming, et al. Self-balanced multi-view orthogonality correlation analysis for image feature learning[J]. Infrared Physics & Technology, 2019, 100: 44–51.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  387
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 修回日期:  2021-05-20
  • 网络出版日期:  2021-06-04
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回