高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能量收集通信系统中功率和调制方式的在线联合优化策略

雷维嘉 孙嘉琳 谢显中 雷宏江

雷维嘉, 孙嘉琳, 谢显中, 雷宏江. 能量收集通信系统中功率和调制方式的在线联合优化策略[J]. 电子与信息学报, 2022, 44(3): 1024-1033. doi: 10.11999/JEIT210145
引用本文: 雷维嘉, 孙嘉琳, 谢显中, 雷宏江. 能量收集通信系统中功率和调制方式的在线联合优化策略[J]. 电子与信息学报, 2022, 44(3): 1024-1033. doi: 10.11999/JEIT210145
LEI Weijia, SUN Jialin, XIE Xianzhong, LEI Hongjiang. Online Joint Optimization of Power and Modulation in Energy Harvesting Communication Systems[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1024-1033. doi: 10.11999/JEIT210145
Citation: LEI Weijia, SUN Jialin, XIE Xianzhong, LEI Hongjiang. Online Joint Optimization of Power and Modulation in Energy Harvesting Communication Systems[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1024-1033. doi: 10.11999/JEIT210145

能量收集通信系统中功率和调制方式的在线联合优化策略

doi: 10.11999/JEIT210145
基金项目: 国家自然科学基金(61971080, 61471076),重庆市教委科学技术研究重点项目(KJZD-M201900602)
详细信息
    作者简介:

    雷维嘉:男,1969年生,博士,教授,主要研究方向为无线通信和移动通信技术

    孙嘉琳:女,1995年生,硕士生,研究方向为无线通信和物理层速率自适应技术

    谢显中:男,1966 年生,博士生导师,教授,研究方向为无线和移动通信技术

    通讯作者:

    孙嘉琳 2503443663@qq.com

  • 中图分类号: TN92

Online Joint Optimization of Power and Modulation in Energy Harvesting Communication Systems

Funds: The National Natural Science Foundation of China (61971080, 61471076), The Key Project of Science and Technology Research of Chongqing Education Commission (KJZD-M201900602)
  • 摘要: 针对源节点配备能量收集装置的点对点能量收集无线通信系统,该文以最大化长期平均传输速率为目标,提出一种基于Lyapunov优化框架的在线功率控制和自适应调制联合优化策略。由于能量到达和信道状态的随机性,优化问题是一个随机优化问题。利用Lyapunov优化框架将电池操作和可用能量约束下的长期时间优化问题转化为每时隙以虚队列“漂移加惩罚”最小化为目标的发送功率、调制方式和帧长的联合优化问题,并求解。该算法仅依赖当前的电池状态和信道状态信息做出决策,计算复杂度低,实用性强。仿真结果显示,所提算法通过联合优化发送功率、调制方式和帧长,能够高效地利用收集的能量,适应信道变化,长期平均实际可达的信息传输速率要明显优于贪婪和半功率算法,即使相比较以信道容量最大化为目标的离线注水算法和其他对比算法,在实际可达的信息传输速率上也有优势。
  • 图  1  系统模型

    图  2  与对比算法性能比较

    图  3  能量到达率$ \lambda $对实际传输速率的影响

    图  4  虚队列偏移量A变化对系统性能的影响

    图  5  惩罚项权重V对系统性能的影响

    表  1  算法实现流程

     设定参数:权重V,虚队列偏移量A
     输入:可选调制方案,初始电池电量Eb(0),搜索步长$ \delta $;
     输出:最优调制方式M,帧长N,发送功率P(t);
     在时隙t
     (1) 观察系统状态:$ h(t) $,$ X(t) $;
     (2) for M=1,2,3,4,5,6 do %给定M下优化$P(t), N$,目
       标函数为$ J(P(t),N|M) $
     (3)   if $ X(t) \ge 0 $
     (4)      $ P(t) = \min \left( {{P_{{\text{d}},\max }},{E_{\text{S}}}(t)/\Delta t} \right) $;
     (5)      由式(7)得到Peb
     (6)      由式(30)得到N
     (7)  else
     (8)      将$ \frac{{\partial J(P(t),N|M)}}{{\partial N}} = 0 $中的Peb看成已知数,由
            式(30)得到$ N(P(t)) $;
     (9)      将$ N(P(t)) $代入目标函数中,在[0, Pd,max]内以
            $ \delta $为步长搜索使目标函数最大化的P(t);
     (10)      由式(7)得到Peb
     (11)      由式(30)得到N
     (12)  end if
     (13) end for
     (14) 计算所有M下各自最优$ \{ P(t),N\} $时的目标函数
       $ J(P(t),M,N) $,选择目标函数最大的M及对应的
       $ \{ P(t),N\} $;
     (15) if $ N \le {N_{{\text{CRC}}}} $ then
     (16)  P(t)=0,$ {R_{\text{b}}}(t) = 0 $;
     (17) end if
     (18) return P(t),MN
    下载: 导出CSV
  • [1] KUMAR A, SINGH K, and BHATTACHARYA D. Green communication and wireless networking[C]. Proceedings of 2013 International Conference on Green Computing, Communication and Conservation of Energy, Chennai, India, 2013: 49–52. doi: 10.1109/ICGCE.2013.6823398.
    [2] ZHANG Hao, GUO Yongxin, ZHONG Zheng, et al. Cooperative integration of RF energy harvesting and dedicated WPT for wireless sensor networks[J]. IEEE Microwave and Wireless Components Letters, 2019, 29(4): 291–293. doi: 10.1109/LMWC.2019.2902047
    [3] ALTINEL D and KURT G K. Modeling of hybrid energy harvesting communication systems[J]. IEEE Transactions on Green Communications and Networking, 2019, 3(2): 523–534. doi: 10.1109/TGCN.2019.2908086
    [4] REZAEE M, MIRMOHSENI M, and AREF M R. Energy harvesting systems with continuous energy and data arrivals: The optimal offline and heuristic online algorithms[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(12): 3739–3753. doi: 10.1109/JSAC.2016.2621355
    [5] OZEL O, TUTUNCUOGLU K, YANG Jing, et al. Transmission with energy harvesting nodes in fading wireless channels: Optimal policies[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1732–1743. doi: 10.1109/JSAC.2011.110921
    [6] WANG Zhe, AGGARWAL V, and WANG Xiaodong. Iterative dynamic water-filling for fading multiple-access channels with energy harvesting[J]. IEEE Journal on Selected Areas in Communications, 2015, 33(3): 382–395. doi: 10.1109/JSAC.2015.2391571
    [7] WANG Zhe, AGGARWAL V, and WANG Xiaodong. Power allocation for energy harvesting transmitter with causal information[J]. IEEE Transactions on Communications, 2014, 62(11): 4080–4093. doi: 10.1109/TCOMM.2014.2357430
    [8] BAI Qing, AMJAD R A, and NOSSEK J A. Average throughput maximization for energy harvesting transmitters with causal energy arrival information[C]. Proceedings of 2013 IEEE Wireless Communications and Networking Conference, Shanghai, China, 2013: 4232–4237. doi: 10.1109/WCNC.2013.6555257.
    [9] 黄晓舸, 樊伟伟, 曹春燕, 等. 小蜂窝网络中不活跃用户的最优能量效率资源分配方案[J]. 电子与信息学报, 2020, 42(3): 637–644. doi: 10.11999/JEIT190303

    HUANG Xiaoge, FAN Weiwei, CAO Chunyan, et al. Energy efficient resource allocation scheme based on inactive users in small cell networks[J]. Journal of Electronics &Information Technology, 2020, 42(3): 637–644. doi: 10.11999/JEIT190303
    [10] AMIRNAVAEI F and DONG Min. Online power control optimization for wireless transmission with energy harvesting and storage[J]. IEEE Transactions on Wireless Communications, 2016, 15(7): 4888–4901. doi: 10.1109/TWC.2016.2548459
    [11] DONG Min, LI Wen, and AMIRNAVAEI F. Online joint power control for two-hop wireless relay networks with energy harvesting[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 463–478. doi: 10.1109/TSP.2017.2768040
    [12] 雷维嘉, 宋海娜, 谢显中. 高阶QAM调制下基于对数似然比门限的自适应解调方案[J]. 电子与信息学报, 2017, 39(6): 1305–1312. doi: 10.11999/JEIT160821

    LEI Weijia, SONG Haina, and XIE Xianzhong. Adaptive demodulation scheme of high order QAM based on log-likelihood ratio threshold[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1305–1312. doi: 10.11999/JEIT160821
    [13] MA Rui and ZHANG Wei. Adaptive MQAM for energy harvesting wireless communications with 1-bit channel feedback[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6459–6470. doi: 10.1109/TWC.2015.2455494
    [14] LI Mingyu, ZHAO Xiaohui, LIANG Hui, et al. Deep reinforcement learning optimal transmission policy for communication systems with energy harvesting and adaptive MQAM[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5782–5793. doi: 10.1109/TVT.2019.2911544
    [15] QIU Chengrun, HU Yang, CHEN Yan, et al. Lyapunov optimization for energy harvesting wireless sensor communications[J]. IEEE Internet of Things Journal, 2018, 5(3): 1947–1956. doi: 10.1109/JIOT.2018.2817590
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  763
  • HTML全文浏览量:  489
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-18
  • 修回日期:  2021-10-20
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回