高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于积累孔径插值技术的星载间断调频连续波SAR成像方法

闵林 刘向前 李宁

闵林, 刘向前, 李宁. 基于积累孔径插值技术的星载间断调频连续波SAR成像方法[J]. 电子与信息学报, 2022, 44(7): 2461-2468. doi: 10.11999/JEIT210140
引用本文: 闵林, 刘向前, 李宁. 基于积累孔径插值技术的星载间断调频连续波SAR成像方法[J]. 电子与信息学报, 2022, 44(7): 2461-2468. doi: 10.11999/JEIT210140
MIN Lin, LIU Xiangqian, LI Ning. Spaceborne Interrupted Frequency Modulation Continuous Wave SAR Imaging Based on Accumulated Aperture Interpolation Technique[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2461-2468. doi: 10.11999/JEIT210140
Citation: MIN Lin, LIU Xiangqian, LI Ning. Spaceborne Interrupted Frequency Modulation Continuous Wave SAR Imaging Based on Accumulated Aperture Interpolation Technique[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2461-2468. doi: 10.11999/JEIT210140

基于积累孔径插值技术的星载间断调频连续波SAR成像方法

doi: 10.11999/JEIT210140
基金项目: 国家自然科学基金(61871175),河南省高等学校重点科研项目(19A420005, 21A520004),河南省科技攻关计划项目(192102210082, 212102210093, 212102210101),河南省青年人才托举工程(2019HYTP006)
详细信息
    作者简介:

    闵林:男,1963年生,教授,研究方向为SAR图像与信号处理

    刘向前:男,1997年生,硕士生,研究方向为SAR成像技术

    李宁:男,1987年生,教授,研究方向为多模式合成孔径雷达成 像及其应用技术

    通讯作者:

    李宁 hedalining@henu.edu.cn

  • 中图分类号: TN957.52

Spaceborne Interrupted Frequency Modulation Continuous Wave SAR Imaging Based on Accumulated Aperture Interpolation Technique

Funds: The National Natural Science Foundation of China (61871175), The College Key Research Project of Henan Province (19A420005, 21A520004), The Plan of Science and Technology of Henan Province (192102210082, 212102210093, 212102210101), The Youth Talent Lifting Project of Henan Province (2019HYTP006)
  • 摘要: 间断调频连续波(IFMCW)合成孔径雷达(SAR)模式通过在不同时间间隔内交替发射和接收信号,解决了星载调频连续波(FMCW)SAR必须收发分置的问题。然而,在该模式下,雷达天线会间歇性地工作于发射和接收状态,从而导致回波数据中出现周期性的空缺。为了解决上述问题,该文提出了一种基于积累孔径插值技术的缺失数据迭代自适应成像处理方法(MIAA-AAIT),用于恢复缺失的数据。实验结果表明,所提方法可以有效地恢复缺失数据,从而显著提高成像质量,大幅降低由周期性数据缺失引起的虚假目标能量。
  • 图  1  星载IFMCW SAR正侧视条带成像几何关系图

    图  2  IFMCW模式收发时序图

    图  3  FMCW SAR回波数据和IFMCW SAR回波数据

    图  4  本文所提MIAA-AAIT方法总体流程图

    图  5  本文方法子孔径划分过程示意图

    图  6  基于MIAA的孔径插值流程图

    图  7  点阵目标仿真成像结果

    图  8  点目标方位向剖面图

    图  9  面目标仿真成像结果

    图  10  A舰船中心方位向剖面图

    表  1  星载IFMCW SAR模式仿真参数

    参数 数值 参数 数值
    雷达工作载频(Hz) 16.70 脉冲发射频率(Hz) 3479.00
    雷达有效速度(m/s) 7613.00 天线长度(m) 4.48
    带宽(MHz) 180.00 接收脉冲(个) 13
    景中心斜距(km) 534.00 缺失脉冲(个) 12
    发射脉冲时宽(μs) 266.71 斜视角(°) 0
    下载: 导出CSV

    表  2  研究区域IC和IE

    模式 IC IE
    FMCW 1.70 10.35
    IFMCW 0.94 11.53
    LPM-AAIT 1.58 10.92
    MIAA-AAIT 1.63 10.56
    下载: 导出CSV
  • [1] 李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116

    LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics &Information Technology, 2016, 38(1): 229–240. doi: 10.11999/JEIT151116
    [2] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [3] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [4] SALZMAN J, AKAMINE D, LEFEVRE R, et al. Interrupted synthetic aperture radar (SAR)[C]. 2001 IEEE Radar Conference (Cat. No. 01CH37200), Atlanta, USA, 2001: 117–122. doi: 10.1109/NRC.2001.922962.
    [5] STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings F (Radar and Signal Processing) , 1992, 139(5): 343–350. doi: 10.1049/ip-f-2.1992.0048
    [6] AHMED N and UNDERWOOD C. Monostatic CW SAR concept for Microsatellites[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 736–739.
    [7] HOOGEBOOM P, HANSSEN R, PASTENA M, et al. PanelSAR, an FMCW based X-band smallsat SAR for infrastructure monitoring[C]. The 27th Annual AIAA/USU Conference on Small Satellites, Logan, USA, 2013: 1–5.
    [8] LIU Y, DENG Y K, WANG R, et al. Signal model and imaging algorithm for spaceborne interrupted continuous-wave synthetic aperture radar[J]. IET Radar, Sonar & Navigation, 2012, 6(5): 348–358. doi: 10.1049/iet-rsn.2011.0287
    [9] LI Ning, WANG R, DENG Yunkai, et al. Improved full-aperture ScanSAR imaging algorithm based on aperture interpolation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1101–1105. doi: 10.1109/LGRS.2014.2384594
    [10] LI Ning, NIU Shilin, GUO Zhengwei, et al. Processing spaceborne interrupted FMCW SAR data with modified aperture interpolation technique[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6695–6698. doi: 10.1109/IGARSS.2018.8518659.
    [11] LIU Kang, YU Weidong, and LV Jiyu. Azimuth interrupted FMCW SAR for high-resolution imaging[J]. IEEE Geoscience and Remote Sensing Letters, To be published.
    [12] 王钢, 周若飞, 邹昳琨. 基于压缩感知理论的图像优化技术[J]. 电子与信息学报, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669

    WANG Gang, ZHOU Ruofei, and ZOU Yikun. Research on image optimization technology based on compressed sensing[J]. Journal of Electronics &Information Technology, 2020, 42(1): 222–233. doi: 10.11999/JEIT190669
    [13] STOICA P, LI Jian, and LING Jun. Missing data recovery via a nonparametric iterative adaptive approach[J]. IEEE Signal Processing Letters, 2009, 16(4): 241–244. doi: 10.1109/LSP.2009.2014114
    [14] HUANG He, HUANG Penghui, LIU Xingzhao, et al. A novel unambiguous spectrum reconstruction algorithm for space-borne high resolution and wide swath SAR imaging based on iterative adaptive algorithm[C]. The 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–6. doi: 10.1109/APSAR46974.2019.9048447.
    [15] YARDIBI T, LI Jian, STOICA P, et al. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 425–443. doi: 10.1109/TAES.2010.5417172
    [16] NING Jiaqi, LIU Dacheng, LIU Kaiyu, et al. An improved full-aperture ScanSAR imaging method integrating the MIAA based aperture interpolation[J]. Journal of Sensors, 2020, 2020: 8196081. doi: 10.1155/2020/8196081
    [17] GLENTIS G O and JAKOBSSON A. Efficient implementation of iterative adaptive approach spectral estimation techniques[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4154–4167. doi: 10.1109/TSP.2011.2145376
    [18] BERIZZI F and CORSINI G. Autofocusing of inverse synthetic aperture radar images using contrast optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1185–1191. doi: 10.1109/7.532282
    [19] LI Xi, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442
    [20] 李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085

    LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1011
  • HTML全文浏览量:  633
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-03-26
  • 网络出版日期:  2021-04-15
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回