高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意力机制的全海深声速剖面预测方法

王同 苏林 任群言 王文博 贾雨晴 马力

王同, 苏林, 任群言, 王文博, 贾雨晴, 马力. 基于注意力机制的全海深声速剖面预测方法[J]. 电子与信息学报, 2022, 44(2): 726-736. doi: 10.11999/JEIT210078
引用本文: 王同, 苏林, 任群言, 王文博, 贾雨晴, 马力. 基于注意力机制的全海深声速剖面预测方法[J]. 电子与信息学报, 2022, 44(2): 726-736. doi: 10.11999/JEIT210078
WANG Tong, SU Lin, REN Qunyan, WANG Wenbo, JIA Yuqing, MA Li. Full-sea Depth Sound Speed Profiles Prediction Using RNN and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 726-736. doi: 10.11999/JEIT210078
Citation: WANG Tong, SU Lin, REN Qunyan, WANG Wenbo, JIA Yuqing, MA Li. Full-sea Depth Sound Speed Profiles Prediction Using RNN and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 726-736. doi: 10.11999/JEIT210078

基于注意力机制的全海深声速剖面预测方法

doi: 10.11999/JEIT210078
基金项目: 国家自然科学基金(11704396)
详细信息
    作者简介:

    王同:女,1996年生,博士生,研究方向为水声物理

    苏林:女,1987年生,副研究员,研究方向为水声物理

    任群言:男,1984年生,研究员,博士生导师,研究方向为水声物理及水声工程

    王文博:男,1992年生,博士,研究方向为水声物理及水声工程

    贾雨晴:女,1992年生,博士,研究方向为水声信号处理及水声工程

    马力:男,1968年生,研究员,博士生导师,研究方向为水声物理及水声工程

    通讯作者:

    苏林 sulin807@mail.ioa.ac.cn

  • 中图分类号: TN911.7; TB566

Full-sea Depth Sound Speed Profiles Prediction Using RNN and Attention Mechanism

Funds: the National Natural Science Foundation of China (11704396)
  • 摘要: 海水中的声速剖面具有明显的时间演化特性,其预测问题可以看作一个非线性的时间序列预测问题。解决此类问题的常用方法大多使用预定义的非线性形式,无法捕捉真正潜在的非线性关系。循环神经网络作为一种为序列建模特别设计的深度神经网络,在捕捉非线性关系上具有极大的灵活性,在非线性自回归的时间序列预测这一问题上展现了它的有效性;注意力机制能够从众多信息中选择出对当前任务目标最关键的信息,对多变量时间序列在时空维度上的非线性关系进行捕捉。该文利用深度学习中的循环神经网络,添加双层注意力机制构建多变量时间序列预测模型,对浅海环境下时变的全海深声速剖面进行预测。多个模型的预测结果表明,该模型相对于单纯的编码-解码模型有着明显的预测性能提升,并且注意力权重的分布能够与实际物理现象相关联,为水声学中物理模型与机器学习的结合提供了新的思路。
  • 图  1  注意力机制

    图  2  添加双层注意力机制的编码-解码模型

    图  3  温度链在该站位采集到的温度数据

    图  4  该站位处25℃等温线分布

    图  5  CTD在该站位测量得到的温度、盐度剖面

    图  6  由经验公式得到的声速剖面数据

    图  7  所选取的数据集1、数据集2、数据集3和数据集4

    图  8  数据集的25°C等温线

    图  9  DA-LSTM (256)获得${E_{{\rm{best}}}}$时的RMSE

    10  注意力可视化图

    表  1  不同模型对全海深声速剖面的预测性能

    模型数据集1数据集2数据集3数据集4
    $ \bar E $$E_{ {\rm{best} } }$$ \bar E $${E_{{\rm{best}}} }$$ \bar E $${E_{{\rm{best}}} }$$ \bar E $${E_{{\rm{best}}} }$
    Encoder-Decoder (32)0.33190.23700.55210.38180.38020.22640.28310.1763
    Encoder-Decoder (64)0.28990.22240.43950.31440.25900.21090.22250.1744
    Encoder-Decoder (128)0.23320.18020.33600.26310.24380.13620.17020.0925
    Encoder-Decoder (256)0.19530.16040.27320.16780.15930.09230.13990.0885
    Encoder-Attn-LSTM (32)0.24670.13080.35640.22320.21780.10280.13750.0987
    Encoder-Attn-LSTM (64)0.22630.12100.31280.22160.18840.11320.11970.0842
    Encoder-Attn-LSTM (128)0.20010.12010.28350.18810.15250.09560.10550.0691
    Encoder-Attn-LSTM (256)0.17760.09310.25950.20220.09420.05630.09190.0541
    Decoder-Attn-LSTM (32)0.22450.16720.37690.25920.21030.10760.12930.0976
    Decoder-Attn-LSTM (64)0.20910.16350.33840.21500.18790.11010.11720.0807
    Decoder-Attn-LSTM (128)0.20610.12500.31290.24270.15080.09390.10290.0667
    Decoder-Attn-LSTM (256)0.15910.11110.26580.16280.10230.05970.09110.0620
    DA-LSTM(32)0.10720.05150.17940.10050.12870.07110.12450.1010
    DA-LSTM (64)0.09750.04560.14770.09480.10680.05120.10190.0532
    DA-LSTM (128)0.08020.04280.12640.08780.08060.04590.08930.0708
    DA-LSTM (256)0.06090.03120.11160.08110.06040.03410.07680.0414
    下载: 导出CSV
  • [1] 李启虎. 水声学研究进展[J]. 声学学报, 2001, 26(4): 295–301. doi: 10.3321/j.issn:0371-0025.2001.04.002

    LI Qihu. Advances of research work in underwater acoustics[J]. Acta Acustica, 2001, 26(4): 295–301. doi: 10.3321/j.issn:0371-0025.2001.04.002
    [2] 汪德昭, 尚尔昌. 水声学[M]. 2版. 北京: 科学出版社, 2013: 9.
    [3] 张建华. 海温预报知识讲座 第一讲 海水温度预报概况[J]. 海洋预报, 2003, 20(4): 81–85. doi: 10.3969/j.issn.1003-0239.2003.04.013

    ZHANG Jianhua. Lectures on sea surface temperature prediction[J]. Marine Forecasts, 2003, 20(4): 81–85. doi: 10.3969/j.issn.1003-0239.2003.04.013
    [4] KURAPOV A L, EGBERT G D, MILLER R N, et al. Data assimilation in a Baroclinic coastal ocean model: Ensemble statistics and comparison of methods[J]. Monthly Weather Review, 2002, 130(4): 1009–1025. doi: 10.1175/1520-0493(2002)130<1009:DAIABC>2.0.CO;2
    [5] MUNK W, WORCESTER P, and CWUNSCH C. Ocean Acoustic Tomography[M]. Cambridge: Cambridge University Press, 1995.
    [6] LEBLANC L R and MIDDLETON F H. An underwater acoustic sound velocity data model[J]. The Journal of the Acoustical Society of America, 1980, 67(6): 2055–2062. doi: 10.1121/1.384448
    [7] DAUGHERTY J R and LYNCH J F. Surface wave, internal wave, and source motion effects on matched field processing in a shallow water waveguide[J]. The Journal of the Acoustical Society of America, 1990, 87(6): 2503–2526. doi: 10.1121/1.399098
    [8] TOLSTOY A, DIACHOK O, and FRAZER L N. Acoustic tomography via matched field processing[J]. The Journal of the Acoustical Society of America, 1991, 89(3): 1119–1127. doi: 10.1121/1.400647
    [9] ZHU Guolei, WANG Yingmin, and WANG Qi. Matched field processing based on Bayesian estimation[J]. Sensors, 2020, 20(5): 1374. doi: 10.3390/s20051374
    [10] SHEN Yining, PAN Xiang, ZHENG Zheng, et al. Matched-field geoacoustic inversion based on radial basis function neural network[J]. The Journal of the Acoustical Society of America, 2020, 148(5): 3279–3290. doi: 10.1121/10.0002656
    [11] 崔宝龙, 徐国军, 笪良龙, 等. 采用小生境遗传算法反演浅海声速剖面研究[J]. 应用声学, 2021, 40(2): 279–286. doi: 10.11684/j.issn.1000-310X.2021.02.016

    CUI Baolong, XU Guojun, DA Lianglong, et al. Shallow sea sound speed profile inversion based on niche genetic algorithm[J]. Applied Acoustics, 2021, 40(2): 279–286. doi: 10.11684/j.issn.1000-310X.2021.02.016
    [12] TAROUDAKIS M I and PAPADAKIS J S. A modal inversion scheme for ocean acoustic tomography[J]. Journal of Computational Acoustics, 1993, 1(4): 395–421. doi: 10.1142/S0218396X93000214
    [13] SKARSOULIS E K, ATHANASSOULIS G A, and SEND U. Ocean acoustic tomography based on peak arrivals[J]. The Journal of the Acoustical Society of America, 1996, 100(2): 797–813. doi: 10.1121/1.416212
    [14] YARDIM C, GERSTOFT P, and HODGKISS W S. Tracking of geoacoustic parameters using Kalman and particle filters[J]. The Journal of the Acoustical Society of America, 2009, 125(2): 746–760. doi: 10.1121/1.3050280
    [15] CARRIÈRE O, HERMAND J P, LE GAC J C, et al. Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment[J]. Journal of Marine Systems, 2009, 78 Suppl: S382-S392.
    [16] CARRIERE O, HERMAND J P, and CANDY J V. Inversion for time-evolving sound-speed field in a shallow ocean by ensemble Kalman filtering[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 586–602. doi: 10.1109/JOE.2009.2033954
    [17] 金丽玲, 李建龙, 徐文. 自回归状态空间模型下时变声速剖面跟踪方法[J]. 声学学报, 2016, 41(6): 813–819.

    JIN Liling, LI Jianlong, and XU Wen. Tracking of time-evolving sound speed profiles with the auto-regressive state-space model[J]. Acta Acustica, 2016, 41(6): 813–819.
    [18] 苏林, 任群言, 庞立臣, 等. 强非线性时间演化声速剖面的序贯反演[J]. 声学学报, 2019, 44(4): 452–462.

    SU Lin, REN Qunyan, PANG Lichen, et al. Sequential inversion of highly nonlinear time-evolving sound speed profiles[J]. Acta Acustica, 2019, 44(4): 452–462.
    [19] 庞立臣, 胡涛, 傅德龙, 等. 集合卡尔曼滤波在时变声速剖面追踪中的性能分析[J]. 声学学报, 2020, 45(2): 176–188.

    PANG Lichen, HU Tao, FU Delong, et al. Performances of the ensemble Kalman filter on the tracking of time-evolving sound speed profiles[J]. Acta Acustica, 2020, 45(2): 176–188.
    [20] LINS I D, DAS CHAGAS MOURA M, SILVA M A, et al. Sea surface temperature prediction via support vector machines combined with particle swarm optimization[C]. International Probabilistic Safety Assessment & Management Conference, Seattle, USA, 2010: 16–29.
    [21] TANGANG F T, HSIEH W W, and TANG B. Forecasting the equatorial Pacific sea surface temperatures by neural network models[J]. Climate Dynamics, 1997, 13(2): 135–147. doi: 10.1007/s003820050156
    [22] NOWRUZI H and GHASSEMI H. Using artificial neural network to predict velocity of sound in liquid water as a function of ambient temperature, electrical and magnetic fields[J]. Journal of Ocean Engineering and Science, 2016, 1(3): 203–211. doi: 10.1016/j.joes.2016.07.001
    [23] JAIN S and ALI M M. Estimation of sound speed profiles using artificial neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 467–470. doi: 10.1109/LGRS.2006.876221
    [24] SUN Sijia and ZHAO Hangfang. Sparse representation of sound speed profiles based on dictionary learning[C]. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Chengdu, China, 2020: 484–488.
    [25] ZHANG Qin, WANG Hui, DONG Junyu, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745–1749. doi: 10.1109/LGRS.2017.2733548
    [26] SARKAR P, JANARDHAN P, and ROY P. Applicability of a long short-term memory deep learning network in sea surface temperature predictions[C]. Earth 1st International Conference on Water Security and Sustainability, Rangpo, Indin, 2019.
    [27] SARKAR P P, JANARDHAN P, and ROY P. Prediction of sea surface temperatures using deep learning neural networks[J]. SN Applied Sciences, 2020, 2(8): 1458. doi: 10.1007/s42452-020-03239-3
    [28] QIN Yao, SONG Dongjin, CHENG Haifeng, et al. A dual-stage attention-based recurrent neural network for time series prediction[C]. Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 2017: 2627–2633.
    [29] HUANG Siteng, WANG Donglin, WU Xuehan, et al. DSANet: Dual self-attention network for multivariate time series forecasting[C]. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 2019: 2129–2132.
    [30] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2204–2212.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  528
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-10-08
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-18
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回