高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

130 GHz CMOS有源矢量合成移相器

李旭光 刘兵 傅海鹏 马凯学

李旭光, 刘兵, 傅海鹏, 马凯学. 130 GHz CMOS有源矢量合成移相器[J]. 电子与信息学报, 2021, 43(6): 1559-1564. doi: 10.11999/JEIT210071
引用本文: 李旭光, 刘兵, 傅海鹏, 马凯学. 130 GHz CMOS有源矢量合成移相器[J]. 电子与信息学报, 2021, 43(6): 1559-1564. doi: 10.11999/JEIT210071
Xuguang LI, Bing LIU, Haipeng FU, Kaixue MA. A 130 GHz CMOS Active Vector-Modulation Phase Shifter[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1559-1564. doi: 10.11999/JEIT210071
Citation: Xuguang LI, Bing LIU, Haipeng FU, Kaixue MA. A 130 GHz CMOS Active Vector-Modulation Phase Shifter[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1559-1564. doi: 10.11999/JEIT210071

130 GHz CMOS有源矢量合成移相器

doi: 10.11999/JEIT210071
基金项目: 国家重点研发计划(2018YFB2202500)
详细信息
    作者简介:

    李旭光:男,1990年生,博士生,研究方向为射频、毫米波集成电路设计

    刘兵:男,1991年生,博士生,研究方向为射频、毫米波集成电路设计

    傅海鹏:男,1985年生,副教授,研究方向为射频、毫米波集成电路设计,太赫兹探测器,晶体管可靠性及建模

    马凯学:男,1973年生,教授,研究方向为射频、毫米波集成电路设计

    通讯作者:

    马凯学 makaixue@tju.edu.cn

  • 中图分类号: TN43

A 130 GHz CMOS Active Vector-Modulation Phase Shifter

Funds: The National Key R&D Program of China (2018YFB2202500)
  • 摘要: 面向毫米波相控阵雷达系统应用,该文基于55 nm CMOS工艺设计了一款工作于130 GHz的有源矢量(VM)合成移相器。该电路包含宽带正交发生器、可变增益放大和矢量合成模块。为提升移相器相位分辨率和移相精度,该电路可变增益放大采用了具有高频宽带属性的共栅放大结构和具有高增益属性的含中和电容的共源共栅放大结构多级级联的形式。为避免移相器在矢量合成时由自身结构特点产生相位断裂而导致移相范围下降,该设计电路在矢量合成模块中融入了数控人工介质(DiCAD)结构。通过全波电磁仿真对所设计毫米波移相器进行验证,在125~135 GHz频率范围内,所设计移相器平均增益大于1 dB,移相器可由控制电压控制实现全360°范围内5.625°的相位步进,RMS相位误差小于4°,电路面积为1100 μm×600 μm,功耗33 mW。
  • 图  1  射频移相架构的相控阵雷达接收系统示意图[1]

    图  2  有源矢量合成移相器结构示意图

    图  3  可变增益放大器电路结构

    图  4  矢量合成结构电路图

    图  5  矢量合成结构的相位断裂示意图

    图  6  DiCAD结构及性能

    图  7  D波段有源矢量合成移相器电路版图

    图  8  移相器各状态回波损耗

    图  10  移相器各状态相位和RMS相位误差

    图  9  移相器各状态增益及平均增益

    表  1  移相器性能比较

    序号频率(GHZ)工艺分辨率(°)增益(dB)RMS相位误差(°)功耗(mW)面积(mm2)
    文献[5]57~6465 nm CMOS11.25–16.34.4~9.500.094#
    文献[6]56~6540 nm CMOS2.7–5~–0.41.4381.12
    文献[7]80.2~96.828 nm SOI22.50.83<11.921.60.06#
    文献[8]71.5~84.50.13 μm SiGe5.62571.35~3.5600.82
    文献[9]162~190130 nm SiGe22.5–6.2<89.9~15.30.07#
    本文*125~13555 nm CMOS5.6251~21.4~4.0330.66
    #:核心面积;*:仿真结果。
    下载: 导出CSV
  • [1] 贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666

    JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
    [2] NATARAJAN A, KOMIJANI A, GUAN X, et al. A 77-GHz phased-array transceiver with on-chip antennas in silicon: transmitter and local LO-path phase shifting[J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 2807–2819. doi: 10.1109/JSSC.2006.884817
    [3] PANG Jian, LI Zheng, KUBOZOE R, et al. A 28-GHz CMOS phased-array beamformer utilizing neutralized Bi-directional technique supporting dual-polarized MIMO for 5G NR[J]. IEEE Journal of Solid-State Circuits, 2020, 55(9): 2371–2386. doi: 10.1109/JSSC.2020.2995039
    [4] JIA Haikun, KUANG Lixue, ZHU Wei, et al. A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar[J]. IEEE Journal of Solid-State Circuits, 2016, 51(10): 2299–2311. doi: 10.1109/JSSC.2016.2580599
    [5] MENG Fanyi, MA Kaixue, YEO K S, et al. A 57-to-64-GHz 0.094-mm2 5-bit passive phase shifter in 65-nm CMOS[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(5): 1917–1925. doi: 10.1109/TVLSI.2015.2469158
    [6] WANG Bindi, GAO H, MATTERS-KAMMERER M K, et al. A 60 GHz 360° phase shifter with 2.7° phase resolution and 1.4° RMS phase error in a 40-nm CMOS technology[C]. IEEE Radio Frequency Integrated Circuits Symposium, Philadelphia, USA, 2018: 144–147. doi: 10.1109/RFIC.2018.8428980.
    [7] PEPE D and ZITO D. Two mm-wave vector modulator active phase shifters with novel IQ generator in 28 nm FDSOI CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(2): 344–356. doi: 10.1109/JSSC.2016.2605659
    [8] LI Huanbo, CHEN Jixin, HOU Debin, et al. A W-band 6-bit phase shifter with 7 dB gain and 1.35° RMS phase error in 130 nm SiGe BiCMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(10): 1839–1843. doi: 10.1109/TCSII.2019.2944166.
    [9] TESTA P V, CARTA C, and ELLINGER F. A 160–190-GHz vector-modulator phase shifter for low-power applications[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(1): 86–89. doi: 10.1109/LMWC.2019.2952766
    [10] LI Xuguang and FU Haipeng. A 100-GHz full 360° reflection-type phase shifter using a balanced phase inverter[J]. Microwave and Optical Technology Letters, 2020, 62(5): 1935–1939. doi: 10.1002/mop.32263
    [11] KIM S Y, KANG D W, KOH K J, et al. An improved wideband all-pass I/Q network for millimeter-wave phase shifters[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(11): 3431–3439. doi: 10.1109/tmtt.2012.2212027
    [12] MOHSENPOUR M M and SAAVEDRA C E. Variable 360° vector-sum phase shifter with coarse and fine vector scaling[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2113–2120. doi: 10.1109/TMTT.2016.2574843
    [13] CHAN W L and LONG J R. A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3): 554–564. doi: 10.1109/JSSC.2009.2039274
    [14] HUANG Daquan, HANT W, WANG Ningyi, et al. A 60 GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size, loss and noise reduction[C]. IEEE International Solid State Circuits Conference, San Francisco, USA, 2006. doi: 10.1109/ISSCC.2006.1696168.
    [15] LAROCCA T, TAM S W, HUANG Daquan, et al. Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs[C]. IEEE MTT-S International Microwave Symposium Digest, Atlanta, USA, 2008: 181–184. doi: 10.1109/MWSYM.2008.4633133.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  254
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 修回日期:  2021-04-27
  • 网络出版日期:  2021-05-14
  • 刊出日期:  2021-06-18

目录

    /

    返回文章
    返回