高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Lawson范数的通用lncosh稀疏自适应算法

李迎松 梁涛 张祥坤 姜景山

李迎松, 梁涛, 张祥坤, 姜景山. 基于Lawson范数的通用lncosh稀疏自适应算法[J]. 电子与信息学报, 2022, 44(2): 654-660. doi: 10.11999/JEIT210057
引用本文: 李迎松, 梁涛, 张祥坤, 姜景山. 基于Lawson范数的通用lncosh稀疏自适应算法[J]. 电子与信息学报, 2022, 44(2): 654-660. doi: 10.11999/JEIT210057
LI Yingsong, LIANG Tao, ZHANG Xiangkun, JIANG Jingshan. Lawson-norm Constrained Generalized Lncosh Based Adaptive Algorithm for Sparse System Identification[J]. Journal of Electronics & Information Technology, 2022, 44(2): 654-660. doi: 10.11999/JEIT210057
Citation: LI Yingsong, LIANG Tao, ZHANG Xiangkun, JIANG Jingshan. Lawson-norm Constrained Generalized Lncosh Based Adaptive Algorithm for Sparse System Identification[J]. Journal of Electronics & Information Technology, 2022, 44(2): 654-660. doi: 10.11999/JEIT210057

基于Lawson范数的通用lncosh稀疏自适应算法

doi: 10.11999/JEIT210057
详细信息
    作者简介:

    李迎松:男,1982年生,教授,博士生导师,研究方向为通信信号处理、自适应信号处理和雷达信号处理及现代天线设计等

    梁涛:男,1996年生,硕士生,研究方向为自适应信号处理

    张祥坤:男,1972年生,研究员,博士生导师,主要研究方向为合成孔径雷达成像理论与技术

    姜景山:男,1936年生,院士,博士生导师,研究方向为微波遥感理论与技术

    通讯作者:

    梁涛  liangtao@hrbeu.edu.cn

  • 中图分类号: TN911.72

Lawson-norm Constrained Generalized Lncosh Based Adaptive Algorithm for Sparse System Identification

  • 摘要: 该文提出一种通用稀疏系统识别Lawson-lncosh自适应滤波算法,该算法采用系数向量的Lawson范数和误差的lncosh函数构建代价函数。Lawson范数约束引入参数p,实现稀疏约束滤波动态调整,所提算法可以提高稀疏系统识别时的收敛速度,减小了稳态误差。误差的lncosh函数具有良好的抗脉冲噪声性能。然后,算法分析了步长参数的取值范围和参数p对算法性能的影响。计算机仿真结果表明,在高斯信号输入和色信号输入情况下,所提算法的性能要明显优于其他现存算法,且具备稀疏约束可控特性。
  • 图  1  稀疏度为93.75%时的算法收敛曲线

    图  2  稀疏度为50%时的算法收敛曲线

    图  3  稀疏度为0%时的算法收敛曲线

    图  4  256抽头系统时的算法收敛曲线

    图  5  256抽头系统在不同迭代步长下的算法收敛曲线

    表  1  实验4各算法参数

    算法$\mu $(高斯输入)$\eta $(高斯输入)$\mu $(AR输入)$\eta $(AR输入)
    ZA-LMS0.00200.0000080.0020.0000100
    RZA-LMS0.00200.0000400.0020.0000300
    ZA-MCC0.00200.0000050.0020.0000050
    RZA-MCC0.00220.0000200.0020.0000100
    ZA-lncosh0.00240.0000050.0020.0000100
    RZA-lncosh0.00240.0000100.0020.0000040
    Lawson-lncosh(p=1)0.00240.0000080.0020.0000030
    Lawson-lncosh(p=0.5)0.00240.0000030.0020.0000010
    Lawson-lncosh(p=0)0.00240.0000040.0020.0000004
    下载: 导出CSV
  • [1] DINIZ P S R. Adaptive Filtering Algorithms and Practical Implementation[M]. 3rd ed. New York: Springer, 2008: 77–126.
    [2] WIDROW B and STEARNS S D. Adaptive Signal Processing[M]. New Jersey: Prentice Hall, 1985: 99–116.
    [3] CHEN Yilun, GU Yuantao, and HERO A O. Sparse LMS for system identification[C]. 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 3125–3128.
    [4] 曲庆, 金坚, 谷源涛. 用于稀疏系统辨识的改进l0-LMS算法[J]. 电子与信息学报, 2011, 33(3): 604–609.

    QU Qing, JIN Jian, and GU Yuantao. An improved l0-LMS algorithm for sparse system identification[J]. Journal of Electronics &Information Technology, 2011, 33(3): 604–609.
    [5] GU Yuantao, JIN Jian, and MEI Shunliang. l0 norm constraint LMS algorithm for sparse system identification[J]. IEEE Signal Processing Letters, 2009, 16(9): 774–777. doi: 10.1109/LSP.2009.2024736
    [6] WANG Chengcheng, ZHANG Yonggang, WEI Ye, et al. A new l0-LMS algorithm with adaptive zero attractor[J]. IEEE Communications Letters, 2015, 19(12): 2150–2153. doi: 10.1109/LCOMM.2015.2490665
    [7] ZHAO Haiquan and WANG Wenyuan. Volterra system identification under maximum correntropy criteria in impulsive environments[C]. The 2016 35th Chinese Control Conference (CCC), Chengdu, China, 2016: 5067–5070.
    [8] LI Yingsong, JIANG Zhengxiong, SHI Wanlu, et al. Blocked maximum correntropy criterion algorithm for cluster-sparse system identifications[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(11): 1915–1919. doi: 10.1109/TCSII.2019.2891654
    [9] SUN Zeyang, LI Yingsong, JIANG Zhengxiong, et al. Active coefficient detection maximum correntropy criterion algorithm for sparse channel estimation under non-Gaussian environments[J]. IEEE Access, 2019, 7: 151867–151877. doi: 10.1109/ACCESS.2019.2924028
    [10] LIU Chang and JIANG Ming. Robust adaptive filter with lncosh cost[J]. Signal Processing, 2020, 168: 107348. doi: 10.1016/j.sigpro.2019.107348
    [11] SUN Zeyang, LI Yingsong, LI Yibing, et al. Steady-state mean-square error analysis for non-negative least lncosh algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(6): 2237–2241. doi: 10.1109/TCSII.2020.3048287
    [12] MSALMAN M S, ELSAYED F, RASHDAN M, et al. A zero-attracting sparse lncosh adaptive algorithm[C]. The 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 2020: 565–568. doi: 10.1109/ELNANO50318.2020.9088847.
    [13] SHANG Wenjing, XUE Wei, LI Yingsong, et al. Improved primal–dual interior-point method using the Lawson-norm for inverse problems[J]. IEEE Access, 2020, 8: 41053–41061. doi: 10.1109/ACCESS.2020.2976727
    [14] KOH T and POWERS E. Efficient methods of estimate correlation functions of Gaussian processes and their performance analysis[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 1032–1035. doi: 10.1109/TASSP.1985.1164623
    [15] 金坚, 谷源涛, 梅顺良. 用于稀疏系统辨识的零吸引最小均方算法[J]. 清华大学学报: 自然科学版, 2010, 50(10): 1656–1659. doi: 10.16511/j.cnki.qhdxxb.2010.10.009

    JIN Jian, GU Yuantao, and MEI Shunliang. Adaptive algorithm for sparse system identification: Zero-attracting LMS[J]. Journal of Tsinghua University:Science &Technology, 2010, 50(10): 1656–1659. doi: 10.16511/j.cnki.qhdxxb.2010.10.009
    [16] DAS R L and NARWARIA M. Lorentzian based adaptive filters for impulsive noise environments[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64(6): 1529–1539. doi: 10.1109/TCSI.2017.2667705
    [17] QIAN Guobing, WANG Shiyuan, and IU H H C. Maximum total complex correntropy for adaptive filter[J]. IEEE Transactions on Signal Processing, 2020, 68: 978–989. doi: 10.1109/TSP.2020.2969042
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1300
  • HTML全文浏览量:  778
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-07-15
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回