高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种有限脉冲响应滤波器格型结构优化方法及灵敏度分析

庄陵 张文静

庄陵, 张文静. 一种有限脉冲响应滤波器格型结构优化方法及灵敏度分析[J]. 电子与信息学报, 2022, 44(2): 686-693. doi: 10.11999/JEIT210028
引用本文: 庄陵, 张文静. 一种有限脉冲响应滤波器格型结构优化方法及灵敏度分析[J]. 电子与信息学报, 2022, 44(2): 686-693. doi: 10.11999/JEIT210028
ZHUANG Ling, ZHANG Wenjing. A Lattice Structure Optimization Method and Sensitivity Analysis of Finite Impulse Response Filter[J]. Journal of Electronics & Information Technology, 2022, 44(2): 686-693. doi: 10.11999/JEIT210028
Citation: ZHUANG Ling, ZHANG Wenjing. A Lattice Structure Optimization Method and Sensitivity Analysis of Finite Impulse Response Filter[J]. Journal of Electronics & Information Technology, 2022, 44(2): 686-693. doi: 10.11999/JEIT210028

一种有限脉冲响应滤波器格型结构优化方法及灵敏度分析

doi: 10.11999/JEIT210028
基金项目: 中国电子科技集团公司第二十九研究所资助课题
详细信息
    作者简介:

    庄陵:女,1978年生,副教授,研究方向为多载波通信及信号处理

    张文静:女,1995年生,硕士生,研究方向为数字信号处理、滤波器结构设计

    通讯作者:

    张文静 zhang_wenjing0818@163.com

  • 中图分类号: TN911.72

A Lattice Structure Optimization Method and Sensitivity Analysis of Finite Impulse Response Filter

Funds: Project Supported by the 29th Research Institute of CETC
  • 摘要: 有限脉冲响应(FIR)滤波器是无线通信研究中多载波调制系统的主要组成单元。针对有限字长效应导致FIR滤波器性能下降问题,该文提出一种FIR滤波器格型结构改善因量化导致的滤波器系数误差,即降低系数灵敏度,利用状态空间结构表示相应改进格型结构系数,并推导分析其系数灵敏度表达式。仿真实例验证理论推导结果,即改进格型结构系数灵敏度与采样周期相关。与传统格型结构相比,在量化字长和采样周期约束下,改进格型结构频响特性曲线更接近理想频响特性曲线,系数灵敏度更小,抗有限字长效应能力更好。
  • 图  1  15阶FIR滤波器零点分布

    图  2  改进格型结构单元

    图  3  FIR滤波器格型改进结构

    图  4  频率响应特性比较(Ts=10–2 s, Bc=8 bit)

    图  5  频率响应特性比较(Ts=10–2 s, Bc=10 bit)

    图  6  频率响应特性比较(Ts=10–4 s, Bc=16 bit)

    图  7  频率响应特性比较(Ts=10–5 s, Bc=16 bit)

    表  1  不同Ts下结构系数灵敏度

    Ts (s)10–210–310–410–5
    Rz12121212
    Rρ19.47611.18481.00181.0000
    下载: 导出CSV

    表  2  两种结构幅频响应与理想幅频响应的差值

    字长Bc (bit)采样周期Ts (s)ωRz (dB)ω (dB)
    810–24.97032.9412
    10–34.97030.9399
    10–44.97030.9437
    1010–24.62080.5500
    10–34.62080.1509
    10–44.62080.1244
    1610–24.71350.0018
    10–34.71359.1602×10–4
    10–44.71353.9264×10–4
    下载: 导出CSV
  • [1] JIANG Lei, ZHANG Haijian, CHENG Shuai, et al. An overview of FIR filter design in future multicarrier communication systems[J]. Electronics, 2020, 9(4): 599. doi: 10.3390/electronics9040599
    [2] 庄陵, 马靖怡, 王光宇, 等. FIR数字滤波器零极点灵敏度分析及优化实现[J]. 通信学报, 2018, 39(9): 168–177. doi: 10.11959/j.issn.1000-436x.2018167

    ZHUANG Ling, MA Jingyi, WANG Guangyu, et al. Analysis and optimal realization of pole-zero sensitivity for FIR digital filters[J]. Journal on Communications, 2018, 39(9): 168–177. doi: 10.11959/j.issn.1000-436x.2018167
    [3] RAJAN A, JAMADAGNI H S, and RAO A. Minimizing quantization effects in digital filtering[C]. 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island, USA, 2009: 501–506. doi: 10.1109/DSP.2009.4785975.
    [4] RENCZES B, KOLLÁR I, MOSCHITTA A, et al. Numerical optimization problems of sine-wave fitting algorithms in the presence of roundoff errors[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(8): 1785–1795. doi: 10.1109/TIM.2016.2562218
    [5] LI Gang, GEVERS M, and SUN Youxian. Performance analysis of a new structure for digital filter implementation[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(4): 474–482. doi: 10.1109/81.841849
    [6] HUANG Chaogeng, LI Gang, and XU Hong. Sensitivity analysis of a novel digital filter structure[C]. 2009 7th International Conference on Information, Communications and Signal Processing, Macau, China, 2009: 1–5. doi: 10.1109/ICICS.2009.5397476.
    [7] 黄朝耿, 李刚. 一种高效数字滤波器结构及其灵敏度分析[J]. 电路与系统学报, 2010, 15(2): 80–86. doi: 10.3969/j.issn.1007-0249.2010.02.015

    HUANG Chaogeng and LI Gang. An efficient orthogonal digital filter structure with sensitivity analysis[J]. Journal of Circuits and Systems, 2010, 15(2): 80–86. doi: 10.3969/j.issn.1007-0249.2010.02.015
    [8] KO H J and TSAI J J P. Robust and computationally efficient digital IIR filter synthesis and stability analysis under finite precision implementations[J]. IEEE Transactions on Signal Processing, 2020, 68: 1807–1822. doi: 10.1109/TSP.2020.2977848
    [9] LIU Yin and PARHI K K. Linear-phase lattice FIR digital filter architectures using stochastic logic[J]. Journal of Signal Processing Systems, 2018, 90(5): 791–803. doi: 10.1007/s11265-017-1224-z
    [10] GRAY A and MARKEL J. Digital lattice and ladder filter synthesis[J]. IEEE Transactions on Audio and Electroacoustics, 1973, 21(6): 491–500. doi: 10.1109/TAU.1973.1162522
    [11] LIM Y C. On the synthesis of IIR digital filters derived from single channel AR lattice network[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 741–749. doi: 10.1109/TASSP.1984.1164394
    [12] LI Gang, LIM Y C, and HUANG Chaogeng. Very robust low complexity lattice filters[J]. IEEE Transactions on Signal Processing, 2010, 58(12): 6093–6104. doi: 10.1109/TSP.2010.2077635
    [13] HUANG Chaogeng, LI Gang, XU Zhixing, et al. Design of optimal digital lattice filter structures based on genetic algorithm[J]. Signal Processing, 2012, 92(4): 989–998. doi: 10.1016/j.sigpro.2011.10.011
    [14] 张玉洪, 保铮. FIR数字滤波器的简化格型实现[J]. 电子与信息学报, 1988, 10(3): 193–201.

    ZHANG Yuhong and BAO Zheng. Simplified lattice realization of fir digital filters[J]. Journal of Electronics &Information Technology, 1988, 10(3): 193–201.
    [15] ANDREWS J G, BUZZI S, CHOI W, et al. What will 5G be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. doi: 10.1109/JSAC.2014.2328098
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  901
  • HTML全文浏览量:  403
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-04-16
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回