高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

素数长理想平衡四元几乎失配互补对构造

彭秀平 郑德亮 李红晓

彭秀平, 郑德亮, 李红晓. 素数长理想平衡四元几乎失配互补对构造[J]. 电子与信息学报, 2022, 44(2): 677-685. doi: 10.11999/JEIT210013
引用本文: 彭秀平, 郑德亮, 李红晓. 素数长理想平衡四元几乎失配互补对构造[J]. 电子与信息学报, 2022, 44(2): 677-685. doi: 10.11999/JEIT210013
PENG Xiuping, ZHENG Deliang, LI Hongxiao. The Constructions of Optimal Balanced Quadriphase Almost Mismatched Complementary Pairs with Prime Length[J]. Journal of Electronics & Information Technology, 2022, 44(2): 677-685. doi: 10.11999/JEIT210013
Citation: PENG Xiuping, ZHENG Deliang, LI Hongxiao. The Constructions of Optimal Balanced Quadriphase Almost Mismatched Complementary Pairs with Prime Length[J]. Journal of Electronics & Information Technology, 2022, 44(2): 677-685. doi: 10.11999/JEIT210013

素数长理想平衡四元几乎失配互补对构造

doi: 10.11999/JEIT210013
基金项目: 河北省自然科学基金(F2021203040),河北省高等学校科学技术研究项目(BJ2018018, ZD2019039, QN2019133, QN2021144)
详细信息
    作者简介:

    彭秀平:女,1984年生,博士,副教授,研究方向为编码理论、信号设计等

    郑德亮:男,1994年生,硕士生,研究方向为序列设计等

    李红晓:女,1995年生,硕士生,研究方向为序列设计等

    通讯作者:

    彭秀平 pengxp@ysu.edu.cn

  • 中图分类号: TN911.2

The Constructions of Optimal Balanced Quadriphase Almost Mismatched Complementary Pairs with Prime Length

Funds: The Natural Science Foundation of Hebei Province (F2021203040), The Science and Technology Program of Universities and Colleges in Hebei Province (BJ2018018, ZD2019039, QN2019133, QN2021144)
  • 摘要: 当一对失配序列的所有异相自相关函数和均为同一非0整数时,称该对失配序列为几乎失配互补对。该文提出平衡4元几乎失配互补对的新类型序列,通过Gray映射证明得到了平衡的素数长4元几乎失配互补对的理论界,基于4阶分圆类,提出满足理论界的周期为素数长的理想平衡4元几乎失配互补对的构造方法。通过该文研究扩大了4元互补对的存在范围,弥补了目前已有4元互补对大多只存在偶数长度的缺陷。
  • 图  1  失配序列$({x_1},{y_1})$$({x_2},{y_2})$的自相关函数值及两者之和

    图  2  失配序列$({x_1},{y_1})$$({x_2},{y_2})$的自相关函数值及两者之和

    表  1  $p$为偶数时,4阶分圆数及计算式

    ${(c,d)_4}$$s \equiv 1(\boldsymbolod 4)$$s \equiv 3(\boldsymbolod 4)$
    ${(0,0)_4}$$(Q - 11 - 6s)/16$$(Q - 11 + 6s)/16$
    ${(0,1)_4},{(1,0)_4},{(3,3)_4}$$(Q - 3 + 2s + 8t)/16$$(Q - 3 - 2s + 8t)/16$
    ${(0,2)_4},{(2,0)_4},{(2,2)_4}$$(Q - 3 + 2s)/16$$(Q - 3 - 2s)/16$
    ${(0,3)_4},{(1,1)_4},{(3,0)_4}$$(Q - 3 + 2s - 8t)/16$$(Q - 3 - 2s - 8t)/16$
    $\begin{array}{l} {(1,2)_4},{(1,3)_4},{(2,1)_4}, \\ {(2,3)_4},{(3,1)_4},{(3,2)_4} \\ \end{array} $$(Q + 1 - 2s)/16$$(Q + 1 + 2s)/16$
    下载: 导出CSV

    表  2  $p$为奇数时,4阶分圆数及计算式

    $(c,d){ _4}$$s \equiv 1(\boldsymbolod 4)$$s \equiv 3(\boldsymbolod 4)$
    ${(0,2)_4}$$(Q + 1 - 6s)/16$$(Q + 1 + 6s)/16$
    ${(0,0)_4},{(2,0)_4},{(2,2)_4}$$(Q - 7 + 2s)/16$$(Q - 7 - 2s)/16$
    ${(0,1)_4},{(1,3)_4},{(3,2)_4}$$(Q + 1 + 2s - 8t)/16$$(Q + 1 - 2s - 8t)/16$
    ${(0,3)_4},{(1,2)_4},{(3,1)_4}$$(Q + 1 + 2s + 8t)/16$$(Q + 1 - 2s + 8t)/16$
    $\begin{array}{l} {(1,0)_4},{(1,1)_4},{(2,1)_4}, \\ {(2,3)_4},{(3,0)_4},{(3,3)_4} \\ \end{array} $$ (Q - 3 - 2s)/16$$(Q - 3 + 2s)/16$
    下载: 导出CSV

    表  3  $p$为奇数时,平衡4元失配序列$({x_1},{y_1})$$({x_2},{y_2})$的定义参数

    $[({j_1},{k_1},{l_1},{r_1}),(j_1',k_1',l_1',r_1'),({j_2},{k_2},{l_2},{r_2}),(j_2',k_2',l_2',r_2')]$$[({x_1}(0),{y_1}(0)),({x_2}(0),{y_2}(0))] \in $
    $[((0,2,1,3),(0,2,1,3)),((0,2,1,3),(0,2,1,3))]$$\begin{array}{*{20}{l} }{\{ [(1, - 1),( - 1,1)];[({\rm{i}}, - {\rm{i}}),( - {\rm{i}},{\rm{i}})];}\\{[({\rm{i}},1),(1, - {\rm{i}})];[( - {\rm{i}}, - 1),( - 1,{\rm{i}})];}\\{[(1,{\rm{i}}),( - 1, - {\rm{i}})];[({\rm{i}}, - 1),( - {\rm{i}},1)]\} }\end{array}$
    $[((0,2,1,3),(0,2,1,3)),((0,2,3,1),(0,2,3,1))]$$\begin{array}{*{20}{l} }{\{ [(1, - {\rm{i}}),({\rm{i}},1)];[( - 1,{\rm{i}}),( - {\rm{i}}, - 1)];}\\{[({\rm{i}},1),(1, - {\rm{i}})];[( - {\rm{i}}, - 1),( - 1,{\rm{i}})];}\\{[(1,{\rm{i}}),( - {\rm{i}},1)];[( - 1, - {\rm{i}}),({\rm{i}}, - 1)];}\\{[({\rm{i}}, - 1),( - 1, - {\rm{i}})];[( - {\rm{i}},1),(1,{\rm{i}})]\} }\end{array}$
    下载: 导出CSV

    表  4  $p$为偶数时,平衡4元失配序列$({x_1},{y_1})$$({x_2},{y_2})$的定义参数

    $[({j_1},{k_1},{l_1},{r_1}),(j_1',k_1',l_1',r_1'),({j_2},{k_2},{l_2},{r_2}),(j_2',k_2',l_2',r_2')]$$[({x_1}(0),{y_1}(0)),({x_2}(0),{y_2}(0))] \in $
    $[((0,2,1,3),(0,2,1,3)),((0,2,1,3),(0,2,1,3))]$$\begin{array}{*{20}{l} }{\{ [(1, - 1),( - 1,1)];[({\rm{i}}, - {\rm{i}}),( - {\rm{i}},{\rm{i}})];}\\{[(1, - {\rm{i}}),( - 1,{\rm{i}})];[({\rm{i}},1),( - {\rm{i}}, - 1)];}\\{[(1,{\rm{i}}),( - 1, - {\rm{i}})];[({\rm{i}}, - 1),( - {\rm{i}},1)]\} }\end{array}$
    $[((0,2,1,3),(0,2,1,3)),((0,2,3,1),(0,2,3,1))]$
    $\begin{array}{*{20}{l} }{\{ [(1, - 1),(1, - 1)];[( - 1,1),( - 1,1)];}\\{[({\rm{i} }, - {\rm{i} }),( - {\rm{i} },{\rm{i} })];[( - {\rm{i} },{\rm{i} }),({\rm{i} }, - {\rm{i} })];}\\{[(1, - {\rm{i} }),( - {\rm{i} }, - 1)];[( - 1,{\rm{i} }),({\rm{i} },1)];}\\{[({\rm{i} },1),( - 1,{\rm{i} })];[( - {\rm{i} }, - 1),(1, - {\rm{i} })];}\\{[(1,{\rm{i} }),({\rm{i} }, - 1)];[( - 1, - {\rm{i}}),( - {\rm{i} },1)];}\\{[({\rm{i} }, - 1),(1,{\rm{i} })];[( - {\rm{i} },1),( - 1, - {\rm{i} })]\} }\end{array}$
    $[((0,1,2,3),(0,1,2,3)),((0,3,1,2),(0,3,1,2))]$$\begin{array}{*{20}{l} }{\{ [({\rm{i}},1),( - 1,{\rm{i}})];[( - {\rm{i}}, - 1),(1, - {\rm{i}})];}\\{[(1,{\rm{i}}),({\rm{i}}, - 1)];[( - 1, - {\rm{i}}),( - {\rm{i}},1)]\} }\end{array}$
    $[((0,1,2,3),(0,1,2,3)),((0,3,2,1),(0,3,2,1))]$$\begin{array}{*{20}{l} }{\{ [({\rm{i}},1),( - {\rm{i}}, - 1)];[( - {\rm{i}}, - 1),({\rm{i}},1)];}\\{[(1,{\rm{i}}),( - 1, - {\rm{i}})];[( - 1, - {\rm{i}}),(1,{\rm{i}})]\} }\end{array}$
    下载: 导出CSV

    表  5  4元周期互补对已有结果总结

    文献周期长度方法平衡性
    文献[15,20]2, 4, 8, 10, 16, 20, 26, 32, 34, 40, ···Gray映射,交织操作不平衡
    文献[21,22]2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 16, 18,
    20, 22, 24, 26, 30, 32, 36, 40, 44, 48, ···
    Gray阵列扩展
    Baker序列
    不平衡
    文献[23]3, 5, 7, 9, 11, 13, ···, 41, 43, 45, 49
    4, 6, 8, 10, ···, 30, 34, 36, 38, ···
    Gray映射
    生成序列扩展
    不平衡
    定理2素数长$ Q=4p+1, p$为奇数4阶分圆平衡
    定理3素数长$ Q=4p+1, p$为偶数4阶分圆平衡
    下载: 导出CSV
  • [1] FAN Pingzhi and DARNELL M. Sequence Design for Communications Applications[M]. Taunton, England: Research Studies Press LTD, 1996: 3–16.
    [2] PARRAUD P. On the non-existence of (almost-) perfect Quaternary sequences[C]. 14th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Melbourne, Australia, 2001: 210–218.
    [3] SCHOLTZ R and WELCH L. GMW sequences (Corresp.)[J]. IEEE Transactions on Information Theory, 1984, 30(3): 548–553. doi: 10.1109/TIT.1984.1056910
    [4] JANG J W, KIM Y S, KIM S H, et al. New sequences with ideal autocorrelation constructed from binary sequences with ideal autocorrelation[C]. IEEE International Symposium on Information Theory, Seoul, Korea, 2009: 278–281. doi: 10.1109/ISIT.2009.5205807.
    [5] LUKE H D. Binary odd-periodic complementary sequences[J]. IEEE Transactions on Information Theory, 1997, 43(1): 365–367. doi: 10.1109/18.567768
    [6] 李琦, 李鼎, 高军萍, 等. 零相关区屏蔽四元周期互补序列偶集设计研究[J]. 电子与信息学报, 2016, 38(2): 318–324. doi: 10.11999/JEIT150636

    LI Qi, LI Ding, GAO Junping, et al. Design of zero correlation zone punctured periodic complementary sequence pairs sets[J]. Journal of Electronics &Information Technology, 2016, 38(2): 318–324. doi: 10.11999/JEIT150636
    [7] 李玉博, 许成谦, 李刚. 基于二元二值序列构造四元低相关区序列集[J]. 电子与信息学报, 2012, 34(5): 1174–1178. doi: 10.3724/SP.J.1146.2011.00980

    LI Yubo, XU Chengqian, and LI Gang. Construction of low correlation zone sequence set using binary sequence with ideal two-level autocorrelation[J]. Journal of Electronics &Information Technology, 2012, 34(5): 1174–1178. doi: 10.3724/SP.J.1146.2011.00980
    [8] ARASU K T, ARYA D, and BAKSHI A. Constructions of punctured difference set pairs and their corresponding punctured binary array Pairs[J]. IEEE Transactions on Information Theory, 2015, 61(4): 2191–2199. doi: 10.1109/TIT.2015.2403857
    [9] SHEN Xiumin, JIA Yanguo, and SONG Xiaofei. Constructions of binary sequence pairs of period 3p with optimal three-level correlation[J]. IEEE Communications Letters, 2017, 21(10): 2150–2153. doi: 10.1109/LCOMM.2017.2700845
    [10] PENG Xiuping, XU Chengqian, and ARASU K T. New families of binary sequence pairs with two-level and three-level correlation[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6968–6978. doi: 10.1109/TIT.2012.2210025
    [11] PENG Xiuping, XU Chengqian, and LI Yubo. Mismatched binary periodic complementary pairs with period 3q[C]. Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA), Dongguan, China, 2019: 1-5. doi: 10.1109/IWSDA46143.2019.8966097.
    [12] SHEN Xiumin, JIA Yanguo, WANG Jiaqi, et al. New families of balanced sequences of even period with three-level optimal autocorrelation[J]. IEEE Communications Letters, 2017, 21(10): 2146–2149. doi: 10.1109/LCOMM.2017.2661750
    [13] 刘涛, 许成谦, 李玉博. 基于差族构造高斯整数周期互补序列[J]. 电子与信息学报, 2019, 41(5): 1167–1172. doi: 10.11999/JEIT180646

    LIU Tao, XU Chengqian, and LI Yubo. Constructions of Gaussian integer periodic complementary sequences based on difference families[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1167–1172. doi: 10.11999/JEIT180646
    [14] ADHIKARY A R, LIU Zilong, GUAN Yongliang, et al. Optimal binary periodic almost-complementary pairs[J]. IEEE Signal Processing Letters, 2016, 23(12): 1816–1820. doi: 10.1109/LSP.2016.2600586
    [15] JANG J W, KIM Y S, KIM S H, et al. New construction methods of periodic complementary sequence sets[J]. Advances in Mathematics of Communications, 2010, 4(1): 61–68. doi: 10.3934/amc.2010.4.61
    [16] TANG Xiaohu and DING Cunsheng. New classes of balanced and almost balanced binary sequences with optimal autocorrelation value[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6398–6405. doi: 10.1109/TIT.2010.2081170
    [17] CUSICK T W, DING Cunsheng, and RENVALL A. Stream Ciphers and Number Theory[M]. Amsterdam: Elsevier, 1998.
    [18] 李玉博, 许成谦, 李刚, 等. 四元零相关区周期互补序列集构造法[J]. 电子与信息学报, 2013, 35(9): 2180–2186. doi: 10.3724/SP.J.1146.2012.01303

    LI Yubo, XU Chengqian, LI Gang, et al. Constructions of periodic complementary sequence sets with zero correlation zone[J]. Journal of Electronics &Information Technology, 2013, 35(9): 2180–2186. doi: 10.3724/SP.J.1146.2012.01303
    [19] 许成谦. 差集偶与最佳二进阵列偶的组合研究方法[J]. 电子学报, 2001, 29(1): 87–89. doi: 10.3321/j.issn:0372-2112.2001.01.024

    XU Chengqian. Differences set pairs and approach for the study of perfect binary array pairs[J]. Acta Electronica Sinica, 2001, 29(1): 87–89. doi: 10.3321/j.issn:0372-2112.2001.01.024
    [20] ZENG Fanxin, ZENG Xiaoping, ZHANG Zhenyu, et al. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping[J]. Advances in Mathematics of Communications, 2012, 6(2): 237–247. doi: 10.3934/amc.2012.6.237
    [21] GIBSON R G and JEDWAB J. Quaternary Golay sequence pairs I: Even length[J]. Designs, Codes and Cryptography, 2011, 59(1/3): 131–146. doi: 10.1007/s10623-010-9471-z
    [22] GIBSON R G and JEDWAB J. Quaternary Golay sequence pairs II: Odd length[J]. Designs, Codes and Cryptography, 2011, 59(1/3): 147–157. doi: 10.1007/s10623-010-9472-y
    [23] ZHOU Zhengchun, LI Jiangdong, YANG Yang, et al. Two constructions of periodic complementary pairs[J]. IEEE Communications Letters, 2018, 22(12): 2507–2510. doi: 10.1109/LCOMM.2018.2876530
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  934
  • HTML全文浏览量:  290
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回