高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于深度学习的异常数据清洗算法

匡俊搴 赵畅 杨柳 王海峰 钱骅

匡俊搴, 赵畅, 杨柳, 王海峰, 钱骅. 一种基于深度学习的异常数据清洗算法[J]. 电子与信息学报, 2022, 44(2): 507-513. doi: 10.11999/JEIT201097
引用本文: 匡俊搴, 赵畅, 杨柳, 王海峰, 钱骅. 一种基于深度学习的异常数据清洗算法[J]. 电子与信息学报, 2022, 44(2): 507-513. doi: 10.11999/JEIT201097
KUANG Junqian, ZHAO Chang, YANG Liu, WANG Haifeng, QIAN Hua. An Outlier Cleaning Algorithm Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(2): 507-513. doi: 10.11999/JEIT201097
Citation: KUANG Junqian, ZHAO Chang, YANG Liu, WANG Haifeng, QIAN Hua. An Outlier Cleaning Algorithm Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(2): 507-513. doi: 10.11999/JEIT201097

一种基于深度学习的异常数据清洗算法

doi: 10.11999/JEIT201097
基金项目: 国家自然科学基金(61971286),国家重点研究发展计划(2020YFB2205603),上海市科学技术委员会科技创新行动计划(19DZ1204300)
详细信息
    作者简介:

    匡俊搴:男,1998年生,博士生,研究方向为大数据信号处理

    赵畅:女,1996年生,博士生,研究方向为无线传感器网络

    杨柳:男,1993年生,博士,研究方向为无线传感器网络、分布式信号处理

    王海峰:男,1969年生,研究员,研究方向为移动通信、物联网

    钱骅:男,1976年生,研究员,研究方向为无线通信、非线性信号处理、大数据信号处理

    通讯作者:

    钱骅 qianh@sari.ac.cn

  • 中图分类号: TN915; TP181

An Outlier Cleaning Algorithm Based on Deep Learning

Funds: The National Natural Science Foundation of China (61971286) , The National Key Research and Development Program of China (2020YFB2205603), The Science and Technology Commission Foundation of Shanghai (19DZ1204300)
  • 摘要: 在物联网(IoT)中采用合适的异常数据清洗算法能极大地提升数据质量。许多研究人员采用统计学方法或分类聚类等方法对时-空相关数据进行清洗。但这些方法需要额外的先验知识,会给汇聚节点带来额外的计算开销。该文根据低秩-稀疏矩阵分解模型,提出一种基于深度神经网络的快速异常数据清洗算法,来解决物联网中时-空相关数据的清洗问题。结合感知数据的时-空相关性和异常值的稀疏性,将异常数据清洗问题转换为优化问题,并采用迭代阈值收缩算法(ISTA)求解该优化问题,再将ISTA算法展开成一个固定长度的深度神经网络。实际数据集的实验结果表明,该方法能够自动更新阈值,比传统的ISTA算法收敛速度更快,精度更高。
  • 图  1  传感节点数据采集和传输示意图

    图  2  无噪情况下的低秩-稀疏模型

    图  3  数据流图

    图  4  ISTA和ISTA-Net算法的性能对比

    图  5  ISTA-Net损失随训练数据批次数的变化情况

    图  6  ISTA和ISTA-Net算法的NMSE比较

    图  7  3种算法的F1分数随异常值比例的变化情况

    表  1  ISTA-Net异常数据恢复算法

     已知:测量矩阵${\boldsymbol{R}}$,深度神经网络层数$K$
     (1) 初始化 $ {\boldsymbol{S}}{\text{ = }}{\boldsymbol{L}}{\text{ = }}{\boldsymbol{0}} $,${\lambda _1} > 0$,${\lambda _2} > 0$
     (2) for 数据集中的每个样本 do
     (3)   初始化 $ {{\boldsymbol{L}}^0} $,$ {{\boldsymbol{S}}^0} $为全零矩阵,$ k = 0 $
     (4)   While $ k < K $ do
     (5)     $ {{\boldsymbol{G}}_{{{\text{1}}_k}}}{\text{ = }}\frac{1}{2}{{\boldsymbol{L}}^k} - \frac{1}{2}{{\boldsymbol{S}}^k} + \frac{1}{2}{\boldsymbol{R}} $
     (6)     $ {{\boldsymbol{G}}_{{{\text{2}}_k}}}{\text{ = }}\frac{1}{2}{{\boldsymbol{S}}^k} - \frac{1}{2}{{\boldsymbol{L}}^k} + \frac{1}{2}{\boldsymbol{R}} $
     (7)     $ {{\boldsymbol{L}}^{k + 1}} = {\text{SV}}{{\text{T}}_{{\lambda _1}/{L_f}}}\left\{ {{{\boldsymbol{G}}_{{{\text{1}}_k}}}} \right\} $
     (8)     $ {{\boldsymbol{S}}^{k + 1}} = {\mathcal{T}_{{\lambda _2}/{L_f}}}\left\{ {{{\boldsymbol{G}}_{{2_k}}}} \right\} $
     (9)     $ k \leftarrow k + 1 $
     (10)   end while
     (11)   输出$ {{\boldsymbol{L}}^K} $和$ {{\boldsymbol{S}}^K} $,并计算归一化均方误差NMSE
     (12)   执行会话
     (13)   for 隐藏层或输出层的每个神经元 do
     (14)     更新网络中的每一个权值和偏差
     (15)   end for
     (16) end for
    下载: 导出CSV
  • [1] 蒋俊正, 杨杰, 欧阳缮. 一种新的无线传感器网络中异常节点检测定位算法[J]. 电子与信息学报, 2018, 40(10): 2358–2364. doi: 10.11999/JEIT171207

    JIANG Junzheng, YANG Jie, and OUYANG Shan. Novel method for outlier nodes detection and localization in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2358–2364. doi: 10.11999/JEIT171207
    [2] 郭志懋, 周傲英. 数据质量和数据清洗研究综述[J]. 软件学报, 2002, 13(11): 2076–2082.

    GUO Zhimao and ZHOU Aoying. Research on data quality and data cleaning: A survey[J]. Journal of Software, 2002, 13(11): 2076–2082.
    [3] YU Tianqi, WANG Xianbin, and SHAMI A. Recursive principal component analysis-based data outlier detection and sensor data aggregation in IoT systems[J]. IEEE Internet of Things Journal, 2017, 4(6): 2207–2216. doi: 10.1109/JIOT.2017.2756025
    [4] KUMAR V and KHOSLA C. Data cleaning-a thorough analysis and survey on unstructured data[C]. The 8th International Conference on Cloud Computing, Data Science & Engineering, Noida, India, 2018: 305–309.
    [5] DIAO Yinglong, LIU Keyan, MENG Xiaoli, et al. A big data online cleaning algorithm based on dynamic outlier detection[C]. 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Xi'an, China, 2015: 230–234.
    [6] 田江, 顾宏. 孤立点一类支持向量机算法研究[J]. 电子与信息学报, 2010, 32(6): 1284–1288. doi: 10.3724/SP.J.1146.2009.00861

    TIAN Jiang and GU Hong. Outlier one class support vector machines[J]. Journal of Electronics &Information Technology, 2010, 32(6): 1284–1288. doi: 10.3724/SP.J.1146.2009.00861
    [7] ZOU Zhuping, XIE Yulai, HUANG Kai, et al. A docker container anomaly monitoring system based on optimized isolation forest[J]. IEEE Transactions on Cloud Computing, To be published. doi: 10.1109/TCC.2019.2935724.
    [8] ZHOU Zihan, LI Xiaodong, WRIGHT J, et al. Stable principal component pursuit[C]. 2010 IEEE International Symposium on Information Theory, Austin, USA, 2010: 1518–1522.
    [9] XU Yichu, DU Bo, ZHANG Liangpei, et al. A low-rank and sparse matrix decomposition-based dictionary reconstruction and anomaly extraction framework for hyperspectral anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7): 1248–1252. doi: 10.1109/LGRS.2019.2943861
    [10] DAUBECHIES I, DEFRISE M, and DE MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413–1457. doi: 10.1002/cpa.20042
    [11] BIOUCAS-DIAS J M and FIGUEIREDO M A T. A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992–3004. doi: 10.1109/TIP.2007.909319
    [12] CANDES E J, WAKIN M B, and BOYD S. Enhancing sparsity by reweighted l1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5): 877–905.
    [13] ELAD M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[M]. New York: Springer, 2010: 185–200.
    [14] CHENG Jie, YE Qiang, JIANG Hongbo, et al. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 850–861. doi: 10.1109/TWC.2012.121412.120148
    [15] 李鹏, 王建新, 曹建农. 无线传感器网络中基于压缩感知和GM(1, 1)的异常检测方案[J]. 电子与信息学报, 2015, 37(7): 1586–1590. doi: 10.11999/JEIT141219

    LI Peng, WANG Jianxin, and CAO Jiannong. Abnormal event detection scheme based on compressive sensing and GM (1, 1) in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1586–1590. doi: 10.11999/JEIT141219
    [16] LIU Jing and RAO B D. Robust PCA via 0-1 regularization[J]. IEEE Transactions on Signal Processing, 2019, 67(2): 535–549. doi: 10.1109/TSP.2018.2883924
    [17] RAHMANI M and ATIA G K. High dimensional low rank plus sparse matrix decomposition[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 2004–2019. doi: 10.1109/TSP.2017.2649482
    [18] ORTIZ-RODRIGUEZ J M and VEGA-CARRILLO H R. A neutron spectra unfolding code, based on iterative procedures, designed under LabVIEW environment[C]. 2012 IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico, 2012: 315–319.
    [19] GIRYES R, ELDAR Y C, BRONSTEIN A M, et al. Tradeoffs between convergence speed and reconstruction accuracy in inverse problems[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1676–1690. doi: 10.1109/TSP.2018.2791945
    [20] YANG Yang, SUN Jian, LI Huibin, et al. ADMM-CSNet: A deep learning approach for image compressive sensing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521–538. doi: 10.1109/TPAMI.2018.2883941
    [21] CHEN Yunjin, WEI Yu, and POCK T. On learning optimized reaction diffusion processes for effective image restoration[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5261–5269.
    [22] SOLOMON O, COHEN R, ZHANG Yi, et al. Deep unfolded robust PCA with application to clutter suppression in ultrasound[J]. IEEE Transactions on Medical Imaging, 2020, 39(4): 1051–1063. doi: 10.1109/TMI.2019.2941271
    [23] Intel Berkeley Research Lab. Intel lab data[EB/OL]. http://db.lcs.mit.edu/labdata/labdata.html, 2019.
    [24] 苏凤阁. 大纳伦河流域修正后的温度和降水数据集(1951–2016)[R]. 国家青藏高原科学数据中心, 2019. doi: 10.11888/Hydro.tpdc.270216.

    SU Fengge. Revised dataset of temperature and precipitation in the Greater Naren River Basin (1951–2016)[R]. National Tibetan Plateau Data Center, 2019. doi: 10.11888/Hydro.tpdc.270216.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1546
  • HTML全文浏览量:  766
  • PDF下载量:  231
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-07-21
  • 网络出版日期:  2021-11-09
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回