Whale Optimization Algorithm for Multi-group with Information Exchange and Vertical and Horizontal Bidirectional Learning
-
摘要: 鲸鱼优化算法(WOA)相较于传统的群体智能优化算法,具有较好的寻优能力和鲁棒性,但仍存在全局寻优能力有限、局部极值难以跳出等问题。针对上述不平衡问题,该文提出一种多种群纵横双向学习的种群划分思路,子群相互独立,子群内个体受到来自横向和纵向两个方向的最优值影响,从而规避局部最优,在探索和开发之间取得均衡。对纵向种群的所有个体,该文提出一种线性下降概率的个体置换策略,促进不同子群的信息流动,加快算法收敛。基于不同个体的历史进化信息,来进行策略算子选择,从而区别于现有基于随机数的策略算子选择方法。利用基准函数进行跨文献对比,数值结果表明该文算法具有很好的优越性和稳定性,在大多数问题上都获得了全局极值,具有较好的问题适用性。Abstract: Compared with traditional swarm intelligence optimization algorithms, the Whale Optimization Algorithm(WOA) has better optimization capabilities and robustness, but there are still problems such as limited global optimization capabilities and difficulty in jumping out of local extremes. Considering the above-mentioned imbalance problem, a multi-group population division idea with vertical and horizontal bidirectional learning is proposed. The subgroups are independent of each other, and the individuals in the subgroups are affected by the optimal values from both the horizontal and vertical directions, thereby avoiding the local optimal and getting the balance between exploration and development.For all individuals in the vertical population, an individual replacement strategy with linearly decreasing probability is proposed to promote the information flow of different subgroups and accelerate the algorithm convergence.The selection of strategy operators is based on the historical evolution information of different individuals, which is different from the existing strategy operator selection methods based on random numbers.The benchmark function is used for cross-document comparison. The numerical results show that the algorithm in this thesis has good superiority and stability. It obtains global extreme on most problems and has good problem applicability.
-
表 1 本文算法参数C 和Pp的基准函数测试均值精度等级(D=30)
实验 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 1 0 e-167 0 e-169 e-004 e-009 e-004 –12569 0 e-016 0 e-010 e-009 2 e-323 e-168 0 e-167 0 0 e-004 –12332 0 e-016 0 e-032 e-032 3 0 e-167 0 e-169 0 0 e-004 –12331 0 e-016 0 e-032 e-032 4 0 e-168 0 e-164 0 0 e-004 –12214 0 e-016 0 e-032 e-032 5 e-055 e-019 e-011 e-066 0 0 e-004 –10347 1.98 e-016 0 e-032 e-032 表 2 本文算法参数A的基准函数测试均值精度等级(D=30)
实验 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 6 0 e-194 0 e-192 0 0 e-004 –11740 0 e-016 0 e-032 e-032 7 0 e-218 0 e-218 0.9569 0 e-004 –11977 0 e-016 0 e-032 e-032 8 0 e-229 0 e-226 0 0 e-004 –11793 2.984 e-016 0 e-032 e-032 表 3 本文算法种群参数p和k的基准函数测试均值精度等级(D=30)
实验 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 9 0 0 0 0 2.87 0 e-004 –11026 8.954 e-016 0 e-032 e-032 10 0 e-164 0 e-168 0 0 e-004 –11977 1.989 e-016 0 e-032 e-032 11 e-264 e-133 e-260 e-134 0 0 e-004 –12569 0 e-016 0 e-032 e-032 12 e-214 e-108 e-212 e-101 0 0 e-004 –12569 0 e-016 0 e-032 e-032 表 4 针对基本测试函数的算法性能均值指标对比(D=30)
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 本文算法 e-157 e-81 e-153 e-81 0 0 e-04 –12569 0 e-16 0 e-32 e-32 HHO e-97 e-51 e-63 e-47 e-02 e-04 e-04 e+04 0 e-16 0 e-06 e-04 WOA e-30 e-21 e-07 e-02 27.86 3.11 e-03 –5080 0 7.40 e-04 0.339 1.889 表 5 本文算法与现有文献的性能指标对比(D=30)
W-SA-WOA[13] CWOA[14] EGolden-SWOA[15] IMWOA[16] 本文算法 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 平均值 标准差 F1 0 0 0 0 0 0 0 0 2.7e-157 1.4e-156 F2 2.57e-21 6.68e-121 4.56e-223 0 6.69e-202 0 8.82e-181 0 3.8e-081 9.1e-81 F3 0 0 – – 0 0 0 0 1.2e-153 6.8e-153 F4 3.56e-94 4.90e-94 3.6e-265 0 3.58e-191 0 4.27e-184 0 1.6e-081 3.0e-081 F5 27.3357 0.2956 0.274 5.17e-00 3.75e-09 7.45e-09 4.29e-05 1.33e-04 0 0 F6 0.0271 0.0201 0 0 6.86e-10 1.29e-09 0 0 0 0 F7 1.17e-04 1.0E-04 3.61e-05 3.73e-05 3.25e-05 2.55e-05 0 0 1.4e-04 1.25e-04 F8 –12447 873.3422 – – –5.58e-101 1.67e + 102 –12455.6 172.0869 –12569 1.8e-12 F9 0 0 0 0 0 0 0 0 0 0 F10 3.02e-15 1.77e-15 8.88e-016 4.01e-31 8.88e-16 0 8.88e-016 1.00e-031 8.88e-016 0 F11 0.0015 0.0073 0 0 0 0 0 0 0 0 F12 0.0785 2.40e-08 3.09e-02 1.37e-02 8.53e-14 2. 61e-10 1.68e-08 1.70e-08 1.5e-032 5.5e-48 F13 0.0421 0.0289 – – 2.63e-11 6.65e-10 5.69e-06 1.96e-05 1.3e-032 5.5e-48 表 6 大规模(D=1000)测试函数的算法性能指标对比
Rosenbrock Penalized1 均值 标准差 成功率 均值 标准差 成功率 本文算法 0 0 100 4.7116e-034 68.6991e-050 100 文献[11] 1.38e-17 4.2e-17 100 4.13e-28 0 100 文献[12] 9.92e+02 8.29e-01 0 1.59e-01 6.19e-02 0 文献[14] 9.90e+02 4.51e-01 0 3.46e-02 1.76e-02 3.33 文献[16] 2.66e-08 4.96e-08 100 3.14e-09 4.24e-09 100 文献[24] 0.3318 0.3973 10 2.20e-06 3.56e-06 100 函数 IWOA[12] GWOA[23] 本文算法 均值 标准差 成功率 均值 标准差 成功率 均值 标准差 成功率 f1 1.86e-111 9.0e-112 100 1.60e-114 5.01e-114 100 8.7516e-157 2.707e-156 100 f2 3.00e-065 3.37e-065 100 1.56e-073 2.09e-073 100 7.2131e-080 1.7043e-079 100 f3 3.15e-112 6.20e-112 100 9.59e-114 2.03e-113 100 4.0063e-153 2.1768e-152 100 f4 3.00e-182 0 100 4.29e-168 0 100 1.4807e-161 8.1032e-161 100 f5 9.92e+02 8.29e-01 0 9.88e+ 02 6.18e-004 0 0 0 100 f6 3.06e-003 2.52e-003 20 2.07e-002 3.53e-002 30 2.2722e-04 1.7054e-04 100 f7 1.10e-001 2.25e-002 40 1.05e-007 3.14e-007 100 4.7116e-034 8.6991e-050 100 f8 0 0 100 0 0 100 0 0 100 f9 5.15e-015 2.89e-015 100 8.88e-016 0 100 8.8818e-016 0 100 f10 0 0 100 0 0 100 0 0 100 f11 1.02e-066 1.63e-066 100 0 0 100 1.0549e-076 5.7776e-076 100 f12 6.58e-112 1.30e-111 100 6.32e-122 1.58e-122 100 1.3948e-122 6.6809e-122 100 f13 0 0 100 0 0 100 0 0 100 f14 1.66e-115 3.30e-115 100 3.64e-130 4.58e-130 100 1.3498e-130 5.5674e-130 100 f15 5.52e-103 1.20e-102 100 3.33e-105 1.05e-104 100 2.2266e-153 9.0116e-153 100 -
[1] 刘小龙. 改进多元宇宙算法求解大规模实值优化问题[J]. 电子与信息学报, 2019, 41(7): 1666–1673. doi: 10.11999/JEIT180751LIU Xiaolong. Application of improved multiverse algorithm to large scale optimization problems[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1666–1673. doi: 10.11999/JEIT180751 [2] MIRJALILI S and LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008 [3] MAFARJA M M and MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection[J]. Neurocomputing, 2017, 260: 302–312. doi: 10.1016/j.neucom.2017.04.053 [4] ABDEL-BASSET M, MANOGARAN G, EL-SHAHAT D, et al. A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem[J]. Future Generation Computer Systems, 2018, 85: 129–145. doi: 10.1016/j.future.2018.03.020 [5] XIONG Guojiang, ZHANG Jing, SHI Dongyuan, et al. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm[J]. Energy Conversion and Management, 2018, 174: 388–405. doi: 10.1016/j.enconman.2018.08.053 [6] CHEN Huiling, XU Yueting, WANG Mingjing, et al. A balanced whale optimization algorithm for constrained engineering design problems[J]. Applied Mathematical Modelling, 2019, 71: 45–59. doi: 10.1016/j.apm.2019.02.004 [7] MAHDAD B. Improvement optimal power flow solution under loading margin stability using new partitioning whale algorithm[J]. International Journal of Management Science and Engineering Management, 2019, 14(1): 64–77. doi: 10.1080/17509653.2018.1488225 [8] 吴书强, 栾飞. 基于改进型鲸鱼算法的云制造资源配置研究[J]. 制造业自动化, 2019, 41(12): 95–98, 124.WU Shuqiang and LUAN Fei. Optimal allocation method for cloud manufacturing resource based on improved whale optimization algorithm[J]. Manufacturing Automation, 2019, 41(12): 95–98, 124. [9] 孙琪, 于永进, 王玉彬, 等. 采用改进鲸鱼算法的配电网综合优化[J/OL]. 电力系统及其自动化学报. 2021, 30(5): 22–29. doi:10.19635/j.cnki.csu-epsa.000553.SUN Qi, YU Yongjin, WANG Yubin, et al. Comprehensive optimization of distribution network with improved whale algorithm[J/OL]. The CSU-EPSA. 2021, 30(5): 22–29. doi:10.19635/j.cnki.csu-epsa.000553. [10] 吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286. doi: 10.7527/S1000-6893.2020.24286WU Kun and TAN Shaochang. Path planning of UAVs based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286. doi: 10.7527/S1000-6893.2020.24286 [11] SUN Yongjun, WANG Xilu, CHEN Yahuan, et al. A modified whale optimization algorithm for large-scale global optimization problems[J]. Expert Systems With Applications, 2018, 114: 563–577. doi: 10.1016/j.eswa.2018.08.027 [12] 龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering-Theory &Practice, 2017, 37(11): 2983–2994. doi: 10.12011/1000-6788(2017)11-2983-12 [13] 褚鼎立, 陈红, 王旭光. 基于自适应权重和模拟退火的鲸鱼优化算法[J]. 电子学报, 2019, 47(5): 992–999. doi: 10.3969/j.issn.0372-2112.2019.05.003CHU Dingli, CHEN Hong, and WANG Xuguang. Whale optimization algorithm based on adaptive weight and simulated annealing[J]. Acta Electronica Sinica, 2019, 47(5): 992–999. doi: 10.3969/j.issn.0372-2112.2019.05.003 [14] 王坚浩, 张亮, 史超, 等. 基于混沌搜索策略的鲸鱼优化算法[J]. 控制与决策, 2019, 34(9): 1893–1900. doi: 10.13195/j.kzyjc.2018.0098WANG Jianhao, ZHANG Liang, SHI Chao, et al. Whale optimization algorithm based on chaotic search strategy[J]. Control and Decision, 2019, 34(9): 1893–1900. doi: 10.13195/j.kzyjc.2018.0098 [15] 肖子雅, 刘升. 精英反向黄金正弦鲸鱼算法及其工程优化研究[J]. 电子学报, 2019, 47(10): 2177–2186. doi: 10.3969/j.issn.0372-2112.2019.10.020XIAO Ziya and LIU Sheng. Study on elite opposition-based golden-sine whale optimization algorithm and its application of project optimization[J]. Acta Electronica Sinica, 2019, 47(10): 2177–2186. doi: 10.3969/j.issn.0372-2112.2019.10.020 [16] 吴泽忠, 宋菲. 基于改进螺旋更新位置模型的鲸鱼优化算法[J]. 系统工程理论与实践, 2019, 39(11): 2928–2944. doi: 10.12011/1000-6788-2018-2156-17WU Zezhong and SONG Fei. Whale optimization algorithm based on improved spiral update position model[J]. Systems Engineering-Theory &Practice, 2019, 39(11): 2928–2944. doi: 10.12011/1000-6788-2018-2156-17 [17] 张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173–1180. doi: 10.3195/j.kzyjc.2019.1362ZHANG Damin, XU Hang, WANG Yirou, et al. Whale optimization algorithm for embedded circle mapping and one dimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173–1180. doi: 10.3195/j.kzyjc.2019.1362 [18] 刘景森, 马义想, 李煜. 改进鲸鱼算法求解工程设计优化问题[J]. 计算机集成制造系统, 2021, 27(7): 1884–1897. doi: 10.13196/j.cims.2021.07.004LIU Jingsen, MA Yixiang, and LI Yu. Improved whale algorithm for solving engineering design optimization problems[J]. Computer Integrated Manufacturing Systems, 2021, 27(7): 1884–1897. doi: 10.13196/j.cims.2021.07.004 [19] 黄清宝, 李俊兴, 宋春宁, 等. 基于余弦控制因子和多项式变异的鲸鱼优化算法[J]. 控制与决策, 2020, 35(3): 559–568. doi: 10.13195/j.kzyjc.2018.0463HUANG Qingbao, LI Junxing, SONG Chunning, et al. Whale optimization algorithm based on cosine control factor and polynomial mutation[J]. Control and Decision, 2020, 35(3): 559–568. doi: 10.13195/j.kzyjc.2018.0463 [20] 黄飞, 吴泽忠. 基于阈值控制的一种改进鲸鱼算法[J]. 系统工程, 2020, 38(2): 133–148.HUNAG Fei and WU Zezhong. An improved whale optimization algorithm based on threshold control[J]. Systems Engineering, 2020, 38(2): 133–148. [21] WATKINS W A and SCHEVILL W E. Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus[J]. Journal of Mammalogy, 1979, 60(1): 155–63. doi: 10.2307/1379766 [22] 杜永兆, 范宇凌, 柳培忠, 等. 多种群协方差学习差分进化算法[J]. 电子与信息学报, 2019, 41(6): 1488–1495. doi: 10.11999/JEIT180670DU Yongzhao, FAN Yuling, LIU Peizhong, et al. Multi-populations covariance learning differential evolution algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1488–1495. doi: 10.11999/JEIT180670 [23] 徐建中, 晏福. 改进鲸鱼优化算法在电力负荷调度中的应用[J]. 运筹与管理, 2020, 29(9): 149–159. doi: 10.12005/orms.2020.0238XU Jianzhong and YAN Fu. The application of improved whale optimization algorithm in power load dispatching[J]. Operations Research and Management Science, 2020, 29(9): 149–159. doi: 10.12005/orms.2020.0238 [24] 郭振洲, 王平, 马云峰, 等. 基于自适应权重和柯西变异的鲸鱼优化算法[J]. 微电子学与计算机, 2017, 34(9): 20–25. doi: 10.19304/j.cnki.issn1000-7180.2017.09.005GUO Zhenzhou, WANG Ping, MA Yunfeng, et al. Whaleoptimization algorithm based on adaptive weight and Cauchy mutation[J]. Microelectronics &Computer, 2017, 34(9): 20–25. doi: 10.19304/j.cnki.issn1000-7180.2017.09.005 [25] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: Algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849–872. doi: 10.1016/j.future.2019.02.028