高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型

李宝奇 黄海宁 刘纪元 刘正君 韦琳哲

李宝奇, 黄海宁, 刘纪元, 刘正君, 韦琳哲. 基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型[J]. 电子与信息学报, 2021, 43(10): 2854-2862. doi: 10.11999/JEIT201042
引用本文: 李宝奇, 黄海宁, 刘纪元, 刘正君, 韦琳哲. 基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型[J]. 电子与信息学报, 2021, 43(10): 2854-2862. doi: 10.11999/JEIT201042
Baoqi LI, Haining HUANG, Jiyuan LIU, Zhengjun LIU, Linzhe WEI. Synthetic Aperture Sonar Underwater Multi-scale Target Efficient Detection Model Based on Improved Single Shot Detector[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2854-2862. doi: 10.11999/JEIT201042
Citation: Baoqi LI, Haining HUANG, Jiyuan LIU, Zhengjun LIU, Linzhe WEI. Synthetic Aperture Sonar Underwater Multi-scale Target Efficient Detection Model Based on Improved Single Shot Detector[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2854-2862. doi: 10.11999/JEIT201042

基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型

doi: 10.11999/JEIT201042
基金项目: 国家自然科学基金(11904386),国家基础科研计划重大项目(JCKY2016206A003),中国科学院青年创新促进会(2019023)
详细信息
    作者简介:

    李宝奇:男,1985年生,特别研究助理,研究方向为水声信号处理、目标检测、识别和跟踪、深度学习理论

    黄海宁:男,1969年生,研究员,研究方向为水声信号与信息处理、目标探测、水声通信与网络等

    刘纪元:男,1963年生,研究员,研究方向为水声信号处理、数字信号处理和水声成像与图像处理等

    刘正君:女,1982年生,助理研究员,研究方向为水声信号处理等

    韦琳哲:男,1991年生,助理研究员,研究方向为水声信号处理等

    通讯作者:

    黄海宁 hhn@mail.ioa.ac.cn

  • 中图分类号: TN959.72; TP391

Synthetic Aperture Sonar Underwater Multi-scale Target Efficient Detection Model Based on Improved Single Shot Detector

Funds: The National Natural Science Foundation of China(11904386), The State Administration of Science, Technology and Industry Program (JCKY2016206A003), The Youth Innovation Promotion Association of Chinese Academy of Sciences (2019023)
  • 摘要: 针对轻量化目标检测模型SSD-MV2对合成孔径声呐(SAS)图像水下多尺度目标检测精度低的问题,该文提出一种新的卷积核模块-可扩张可选择模块(ESK),ESK具有通道可扩张、通道可选择和模型参数少的优点。与此同时,利用ESK模块重新设计了SSD的基础网络和附加特征提取网络,记作SSD-MV2ESK,并为其选择了合理的扩张系数和多尺度系数。在合成孔径声呐图像水下多尺度目标检测数据集SST-DET上,SSD-MV2ESK在模型参数基本相等的条件下,检测精度比SSD-MV2提升4.71%。实验结果表明,SSD-MV2ESK适用于合成孔径声呐图像水下多尺度目标检测任务。
  • 图  1  ESK特征提取模块

    图  2  基于ESK模块的SSD目标检测模型

    图  3  SSD-MV2ESK对合成孔径声呐水下多尺度目标的检测效果图

    表  1  合成孔径声呐水下多尺度目标检测数据集组成

    目标训练(幅)测试(幅)
    圆柱形目标1038
    线缆27530
    疑似物25533
    总计63371
    下载: 导出CSV

    表  2  目标检测模型性能比较

    模型基础网络特征提取提取网络mAP(%)模型参数(MB)检测时间(ms)
    SSD-SQ[21]SQNetOAN58.906.611.25
    SSD-MV1[19]MobileNet V1OAN67.4627.710.47
    SSD-MV2[20]MobileNet V2IRBAN70.3712.517.90
    SSD-MV2ISK[22]MobileNet V2ISKISKAN72.8759.479.63
    SSD-MV2ESKMobileNet V2ESKESKAN75.0812.646.67
    下载: 导出CSV

    表  3  基础网络扩张系数对SSD-MV2ESK性能的影响

    扩张系数mAP(%)模型参数(MB)检测时间(ms)
    166.276.428.20
    574.3914.931.34
    1074.7230.531.36
    1578.3252.431.77
    2081.6780.632.28
    4085.29256.032.92
    下载: 导出CSV

    表  4  基础网络多尺度系数对SSD-MV2ESK性能的影响

    多尺度系数mAP(%)模型参数(MB)检测时间(ms)
    170.4612.530.89
    271.8112.536.29
    475.0812.646.46
    下载: 导出CSV

    表  5  模型分类准确率(%)

    分类网络MobileNet V2_4_1MobileNet V2_4_2MobileNet V2_4_4
    准确率72.7277.2778.78
    下载: 导出CSV
  • [1] HAYES M P and GOUGH P T. Synthetic aperture sonar: A review of current status[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 207–224. doi: 10.1109/JOE.2009.2020853
    [2] 吴浩然, 张非也, 唐劲松, 等. 基于参考距离史的多子阵SAS成像算法[J]. 电子与信息学报, 2021, 43(3): 650–656. doi: 10.11999/JEIT200620

    WU Haoran, ZHANG Feiye, TANG Jinsong, et al. A imaging algorithm based on the reference range history for the multiple receivers synthetic aperture sonar[J]. Journal of Electronics &Information Technology, 2021, 43(3): 650–656. doi: 10.11999/JEIT200620
    [3] WANG Peng, CHI Cheng, ZHANG Yu, et al. Fast imaging algorithm for downward-looking 3D synthetic aperture sonars[J]. IET Radar, Sonar & Navigation, 2020, 14(3): 459–467.
    [4] SUN Sibo, CHEN Yingchun, QIU Longhao, et al. Inverse synthetic aperture sonar imaging of underwater vehicles utilizing 3-D rotations[J]. IEEE Journal of Oceanic Engineering, 2020, 45(2): 563–576. doi: 10.1109/JOE.2019.2891281
    [5] HINTON G. Where do features come from?[J]. Cognitive Science, 2014, 38(6): 1078–1101. doi: 10.1111/cogs.12049
    [6] LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [7] SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85–117. doi: 10.1016/j.neunet.2014.09.003
    [8] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386
    [9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [10] XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5987–5995.
    [11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Washington, USA, 2014: 580–587.
    [12] GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, USA, 2015: 1440–1448.
    [13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    [14] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [15] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788.
    [16] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference, Amsterdam, The Kingdom of the Netherlands, 2016: 21–37.
    [17] IANDOLA F N, HAN Song, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
    [18] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9.
    [19] HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. https://arxiv.org/abs/1704.04861, 2017.
    [20] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520.
    [21] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [22] LI Xiang, WANG Xiang, HU Xiaolin, et al. Selective kernel networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 510–519.
    [23] WILLIAMS D P. Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks[C]. The 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexican, 2016: 2497–2502.
    [24] MCKAY J, GERG I, MONGA V, et al. What’s mine is yours: Pretrained CNNs for limited training sonar ATR[C]. OCEANS 2017 - Anchorage, Anchorage, USA, 2017: 1–7.
    [25] WILLIAMS D P. On the use of tiny convolutional neural networks for human-expert-level classification performance in sonar imagery[J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 236–260. doi: 10.1109/JOE.2019.2963041
    [26] 李宝奇, 贺昱曜, 强伟, 等. 基于并行附加特征提取网络的SSD地面小目标检测模型[J]. 电子学报, 2020, 48(1): 84–91. doi: 10.3969/j.issn.0372-2112.2020.01.010

    LI Baoqi, HE Yuyao, QIANG Wei, et al. SSD with parallel additional feature extraction network for ground small target detection[J]. Acta Electronica Sinica, 2020, 48(1): 84–91. doi: 10.3969/j.issn.0372-2112.2020.01.010
    [27] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    [28] WANG Panqu, CHEN Pengfei, YUAN Ye, et al. Understanding convolution for semantic segmentation[C]. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, USA, 2018: 1451–1460.
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  1020
  • HTML全文浏览量:  350
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2021-05-29
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回