Reference Signal Trusted Reconstruction for Passive Radar Based on Optimal Clutter Rejection
-
摘要: 参考信号重构是数字电视外辐射源雷达信号处理的关键技术之一,重构信号质量直接影响监测信号中时域杂波抑制效果。针对工程应用中重构的参考信号与实际发射信号失配的问题,该文以监测信号时域杂波抑制效果最优为指标,提出一种基于“解调-重调制”的参考信号可信重构方法。首先介绍参考信号重调制方法并建立基于非理想发射信号的信号模型;然后推导了重调制参考信号与监测信号时域杂波抑制效果间的理论关系,基于杂波抑制效果最优的准则,得到可信重构参考信号;最后仿真和实测数据验证了该参考信号可信重构方法的有效性。Abstract: Reference signal reconstruction is one of the key technologies for signal processing of passive radar based on digital TV signals. The quality of the reconstructed signal affects directly the time-domain clutter suppression effect of the surveillance signal. To solve the problem that the reconstructed reference signal can not match the actual transmitted signal, this paper proposes a reference signal trusted reconstruction method based on “Demodulation-Remodulation” with the indicator that the optimal time-domain clutter suppression effect of the surveillance signal. First, the reference signal remodulation method is introduced and a signal model is established based on the non-ideal transmitted signal. Then, the theoretical relationship between the remodulation reference signal and the time-domain clutter suppression of the surveillance signal is derived. Based on the criterion of the optimal clutter suppression, the trusted reconstruction of the reference signal is obtained. Finally, simulation and field experiment verify the effectiveness of the reference signal trusted reconstruction method.
-
表 1 监测信号杂波和目标参数
直达波 多径1 多径2 多径3 目标1 目标2 距离元 0 11 45 100 70 40 多普勒元 0 0 0 0 –30 20 强度(dB) 0 –8.8 –16.2 –14.9 –58.0 –45.0 表 2 RD谱基底和目标强度(dB)
基底 目标1强度 目标2强度 使用传统重构参考信号进行杂波抑制 43.67 54.53 69.32 使用可信重构参考信号进行杂波抑制 40.94 54.81 68.68 表 3 实测数据RD谱基底和目标强度(dB)
基底 目标强度 使用传统重构参考信号进行杂波抑制 82.04 103.9 使用可信重构参考信号进行杂波抑制 76.67 103.8 -
[1] 万显荣. 基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J]. 雷达学报, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027WAN Xianrong. An overview on development of passive radar based on the low frequency band digital broadcasting and TV signals[J]. Journal of Radars, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027 [2] KUSCHEL H, CRISTALLINI D, and OLSEN K E. Tutorial: Passive radar tutorial[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(2): 2–19. doi: 10.1109/MAES.2018.160146 [3] MALANOWSKI M and KULPA K. Two methods for target localization in multistatic passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 572–580. doi: 10.1109/TAES.2012.6129656 [4] FU Yan, WAN Xianrong, ZHANG Xun, et al. Parallel processing algorithm for multipath clutter cancellation in passive radar[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 121–129. doi: 10.1049/iet-rsn.2017.0106 [5] LIU Yuqi, YI Jianxin, WAN Xianrong, et al. Evaluation of clutter suppression in CP-OFDM-Based passive radar[J]. IEEE Sensors Journal, 2019, 19(14): 5572–5586. doi: 10.1109/JSEN.2019.2907660 [6] AUBRY A, CAROTENUTO V, DE MAIO A, et al. Joint exploitation of TDOA and PCL techniques for two-dimensional target localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 597–609. doi: 10.1109/TAES.2019.2917990 [7] ZAIMBASHI A. Target detection in analog terrestrial TV-based passive radar sensor: Joint delay-Doppler estimation[J]. IEEE Sensors Journal, 2017, 17(17): 5569–5580. doi: 10.1109/JSEN.2017.2725822 [8] MALANOWSKI M, KULPA K, KULPA J, et al. Analysis of detection range of FM-based passive radar[J]. IET Radar, Sonar & Navigation, 2014, 8(2): 153–159. doi: 10.1049/iet-rsn.2013.0185 [9] PALMER J E, HARMS H A, SEARLE S J, et al. DVB-T passive radar signal processing[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2116–2126. doi: 10.1109/TSP.2012.2236324 [10] WAN Xianrong, YI Jianxin, ZHAO Zhixin, et al. Experimental research for CMMB-based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70–85. doi: 10.1109/TAES.2013.120737 [11] 唐慧, 万显荣, 陈伟, 等. 数字地面多媒体广播外辐射源雷达目标探测实验研究[J]. 电子与信息学报, 2013, 35(3): 575–580. doi: 10.3724/SP.J.1146.2012.00939TANG Hui, WAN Xianrong, CHEN Wei, et al. Experimentation on target detection with passive radar based on digital terrestrial multimedia broadcasting[J]. Journal of Electronics &Information Technology, 2013, 35(3): 575–580. doi: 10.3724/SP.J.1146.2012.00939 [12] COLONE F, O’HAGAN D W, LOMBARDO P, et al. A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 698–722. doi: 10.1109/TAES.2009.5089551 [13] YI Jianxin, WAN Xianrong, LI Deshi, et al. Robust clutter rejection in passive radar via generalized subband cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1931–1946. doi: 10.1109/TAES.2018.2805228 [14] MALANOWSKI M and KULPA K. Digital beamforming for Passive Coherent Location radar[C]. 2008 IEEE Radar Conference, Roma, Italy, 2008: 1–6. doi: 10.1109/RADAR.2008.4720988. [15] SEARLE S, HOWARD S, PALMER J, et al. Remodulation of DVB—T signals for use in passive bistatic radar[C]. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2010: 1112–1116. doi: 10.1109/ACSSC.2010.5757576. [16] 万显荣, 岑博, 易建新, 等. 中国移动多媒体广播外辐射源雷达参考信号获取方法研究[J]. 电子与信息学报, 2012, 34(2): 338–343. doi: 10.3724/SP.J.1146.2011.00572WAN Xianrong, CEN Bo, YI Jianxin, et al. Reference signal extraction methods for CMMB-based passive bistatic radar[J]. Journal of Electronics &Information Technology, 2012, 34(2): 338–343. doi: 10.3724/SP.J.1146.2011.00572 [17] WAN Xianrong, WANG Junfang, HONG Sheng, et al. Reconstruction of reference signal for DTMB-based passive radar systems[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 165–168. doi: 10.1109/CIE-Radar.2011.6159501. [18] LIU Jun, LI Hongbin, and HIMED B. Analysis of cross-correlation detector for passive radar applications[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 772–776. doi: 10.1109/RADAR.2015.7131100. [19] TANG Hui, WAN Xianrong, YI Jianxin, et al. Performance of the least squares filter for passive radar interference cancellation applications[J]. IET Radar, Sonar & Navigation, 2017, 11(8): 1208–1215. doi: 10.1049/iet-rsn.2016.0410 [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 20600-2006 数字电视地面广播传输系统帧结构、信道编码和调制[S]. 北京: 中国标准出版社, 2007.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and China National Standardization Administration Committee. GB 20600-2006 Framing structure, channel coding and modulation for digital television terrestrial broadcasting system[S]. Beijing: China Standards Press, 2007. [21] European Telecommunications Standard Institute. Digital Video Broadcasting (DVB); Measurement guidelines for DVB systems[R]. ETSI Technical Report ETR 290, 1997. [22] 万显荣, 唐慧, 王俊芳, 等. DTMB外辐射源雷达参考信号纯度对探测性能的影响分析[J]. 系统工程与电子技术, 2013, 35(4): 725–729. doi: 10.3969/j.issn.1001-506X.2013.04.08WAN Xianrong, TANG Hui, WANG Junfang, et al. Influence of reference signal purity on target detection performance in DTMB-based passive radar[J]. Systems Engineering and Electronics, 2013, 35(4): 725–729. doi: 10.3969/j.issn.1001-506X.2013.04.08 [23] MAHFOUDIA O, HORLIN F, and NEYT X. Performance analysis of the reference signal reconstruction for DVB-T passive radars[J]. Signal Processing, 2019, 158: 26–35. doi: 10.1016/j.sigpro.2018.12.016 [24] CHONG E K P and ŻAK S H. An Introduction to Optimization[M]. 3rd ed. Hoboken, US: John Wiley & Sons Inc., 2008: 101–105. [25] MOSCARDINI C, PETRI D, CAPRIA A, et al. Batches algorithm for passive radar: A theoretical analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1475–1487. doi: 10.1109/TAES.2015.130407