高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于高斯近似的极化码打孔算法

李世宝 高迅 董振威 刘建航 崔学荣

李世宝, 高迅, 董振威, 刘建航, 崔学荣. 一种基于高斯近似的极化码打孔算法[J]. 电子与信息学报, 2021, 43(11): 3149-3155. doi: 10.11999/JEIT201007
引用本文: 李世宝, 高迅, 董振威, 刘建航, 崔学荣. 一种基于高斯近似的极化码打孔算法[J]. 电子与信息学报, 2021, 43(11): 3149-3155. doi: 10.11999/JEIT201007
Shibao LI, Xun GAO, Zhenwei DONG, Jianhang LIU, Xuerong CUI. A Puncturing Algorithm of Polar Code Based on Gaussian Approximation[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3149-3155. doi: 10.11999/JEIT201007
Citation: Shibao LI, Xun GAO, Zhenwei DONG, Jianhang LIU, Xuerong CUI. A Puncturing Algorithm of Polar Code Based on Gaussian Approximation[J]. Journal of Electronics & Information Technology, 2021, 43(11): 3149-3155. doi: 10.11999/JEIT201007

一种基于高斯近似的极化码打孔算法

doi: 10.11999/JEIT201007
基金项目: 国家重点研发计划(2017YFC1405203),国家自然科学基金(61972417, 61902431, 91938204),中央高校基本科研业务费专项资金(19CX05003A-4)
详细信息
    作者简介:

    李世宝:男,1978年生,硕士、副教授,研究方向为移动计算、信道编码等

    高迅:男,1996年生,硕士生,研究方向为信道编码

    董振威:男,1997年生,硕士生,研究方向为信道编码

    刘建航:男,1978年生,博士、副教授,研究方向为车联网等

    崔学荣:男,1979年生,博士、教授,研究方向为智能感知等

    通讯作者:

    李世宝 lishibao@upc.edu.cn

  • 中图分类号: TN911.22

A Puncturing Algorithm of Polar Code Based on Gaussian Approximation

Funds: The National Key R&D Program of China (2017YFC1405203), The National Natural Science Foundation of China (61972417, 61902431, 91938204), The Fundamental Research Funds for the Central Universities (19CX05003A-4)
  • 摘要: 现有的极化码打孔算法均未考虑信道构造过程对算法性能的影响,针对这一问题,该文提出一种基于高斯近似的极化码打孔算法(GAPPC)。首先将高斯近似作为极化码构造算法,分析高斯近似与打孔算法的关系,以降低信道构造输出值为目标,引入高斯修正因子,推导出改进的高斯近似函数。然后将改进的高斯近似函数引入信道构造,对极化子信道进行排序获得信道可靠性排序集合。最后依据信道容量关系确定映射规则,选出打孔比特集合和冻结比特集合,完成打孔极化码的构建。实验结果显示,在不同的码长和码率下,误帧率和误码率均获得显著降低。
  • 图  1  基础的蝶形计算结构

    图  2  蝶形计算中信道容量关系

    图  3  不同码长相同码率下的4种极化码打孔算法性能对比

    图  4  相同码长不同码率下的4种极化码打孔算法性能对比

    表  1  GAPPC算法

     输入:极化码的码长$N$,打孔后码长$M$,信息比特长度$K$,打孔比特长度$P = N - M$
     (1) 使用对N长的极化码进行MGA构造,获得子信道可靠性升序集合${R_{\rm{MGA}}}$
     (2) 选出无能力比特位置集合$\mathcal{Q} = \left\{ {1,2,\cdots,P} \right\}$,应用改进信道映射在编码结构中找出打孔比特位置集合$\mathcal{P}$
     (3) 在${R_{\rm{MGA}}}$中除去无能力比特位置找出可靠性最低的$M - K$比特,设为剩余冻结比特集合${\mathcal{Q}^C}$
     (4) 依据${\mathcal{Q}^C}$和$\mathcal{Q}$得出冻结比特集合${A^C}$和信息比特集合$A$
    下载: 导出CSV

    表  2  4种算法的计算复杂度对比

    打孔算法(256, 186, 93)(512, 400, 100)(1024, 860, 512)(2048,1900,1024)
    LCP204946091024122529
    WQP211847201040422676
    BD204946091024122529
    GAPPC260856161188024156
    下载: 导出CSV
  • [1] ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379
    [2] 刘建航, 何怡静, 李世宝, 等. 基于预译码的极化码最大似然简化连续消除译码算法[J]. 电子与信息学报, 2019, 41(4): 959–966. doi: 10.11999/JEIT180324

    LIU Jianhang, HE Yijing, LI Shibao, et al. Pre-decoding based maximum-likelihood simplified successive-cancellation decoding of polar codes[J]. Journal of Electronics &Information Technology, 2019, 41(4): 959–966. doi: 10.11999/JEIT180324
    [3] 王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716

    WANG Qiong, LUO Yajie, and LI Sifang. Polar adaptive successive cancellation list decoding based on segmentation cyclic redundancy check[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1572–1578. doi: 10.11999/JEIT180716
    [4] ESLAMI A and PISHRO-NIK H. A practical approach to polar codes[C]. 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), St. Petersburg, Russia, 2011: 16–20. doi: 10.1109/ISIT.2011.6033837.
    [5] SHIN D M, LIM S C, and YANG K. Design of length-compatible polar codes based on the reduction of polarizing matrices[J]. IEEE Transactions on Communications, 2013, 61(7): 2593–2599. doi: 10.1109/TCOMM.2013.052013.120543
    [6] NIU Kai, CHEN Kai, and LIN Jiaru. Beyond turbo codes: Rate-compatible punctured polar codes[C]. IEEE International Conference on Communications (ICC), Budapest, Hungary, 2013: 3423–3427. doi: 10.1109/ICC.2013.6655078.
    [7] NIU Kai, DAI Jincheng, CHEN Kai, et al. Rate-compatible punctured polar codes: Optimal construction based on polar spectra[EB/OL]. https://arxiv.org/pdf/1612.01352, 2016.
    [8] LIU Wei, WANG Yue, LI Ao, et al. An improved puncturing scheme for polar codes[C]. 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 2020: 154–158. doi: 10.1109/IWCMC48107.2020.9148522.
    [9] HANIF M A and VAFI S. A modified approach to punctured product polar codes[J]. Journal of Telecommunications and Information Technology, 2019, 3: 63–69. doi: 10.26636/jtit.2019.132219
    [10] JANG M, AHN S K, JEONG H, et al. Rate matching for polar codes based on binary domination[J]. IEEE Transactions on Communications, 2019, 67(10): 6668–6681. doi: 10.1109/TCOMM.2019.2930502
    [11] HONG S N and JEONG M O. An efficient construction of rate-compatible punctured polar (RCPP) codes using hierarchical puncturing[J]. IEEE Transactions on Communications, 2018, 66(11): 5041–5052. doi: 10.1109/TCOMM.2018.2854183
    [12] ZHAO Jianhan, ZHANG Wei, LIU Yanyan, et al. A rate-matching concatenation scheme of polar codes with outer reed-Solomon codes[J]. IEEE Wireless Communications Letters, 2021, 10(3): 459–463. doi: 10.1109/LWC.2020.3033850
    [13] ZHANG Liang, ZHANG Zhaoyang, WANG Xianbin, et al. On the puncturing patterns for punctured polar codes[C]. 2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, USA, 2014: 121–125. doi: 10.1109/ISIT.2014.6874807.
    [14] BIOGLIO V, GABRY F, and LAND I. Low-complexity puncturing and shortening of polar codes[C]. 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNCW.2017.7919040.
    [15] LI Liping, SONG Wei, and NIU Kai. Optimal puncturing of polar codes with a fixed information set[J]. IEEE Access, 2019, 7: 65965–65972. doi: 10.1109/ACCESS.2019.2918346
    [16] WU Daolong, LI Ying, and SUN Yue. Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation[J]. IEEE Communications Letters, 2014, 18(7): 1099–1102. doi: 10.1109/LCOMM.2014.2325811
    [17] TAL I and VARDY A. How to construct polar codes[J]. IEEE Transactions on Information Theory, 2013, 59(10): 6562–6582. doi: 10.1109/TIT.2013.2272694
    [18] CHUNG S Y, RICHARDSON T J, and URBANKE R L. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. IEEE Transactions on Information Theory, 2001, 47(2): 657–670. doi: 10.1109/18.910580
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  978
  • HTML全文浏览量:  590
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-06-11
  • 网络出版日期:  2021-06-24
  • 刊出日期:  2021-11-23

目录

    /

    返回文章
    返回