高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阶梯型特征空间分割与局部注意力机制的行人重识别

石跃祥 周玥

石跃祥, 周玥. 基于阶梯型特征空间分割与局部注意力机制的行人重识别[J]. 电子与信息学报, 2022, 44(1): 195-202. doi: 10.11999/JEIT201006
引用本文: 石跃祥, 周玥. 基于阶梯型特征空间分割与局部注意力机制的行人重识别[J]. 电子与信息学报, 2022, 44(1): 195-202. doi: 10.11999/JEIT201006
SHI Yuexiang, ZHOU Yue. Person Re-identification Based on Stepped Feature Space Segmentation and Local Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(1): 195-202. doi: 10.11999/JEIT201006
Citation: SHI Yuexiang, ZHOU Yue. Person Re-identification Based on Stepped Feature Space Segmentation and Local Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(1): 195-202. doi: 10.11999/JEIT201006

基于阶梯型特征空间分割与局部注意力机制的行人重识别

doi: 10.11999/JEIT201006
基金项目: 国家自然科学基金(61602397, 61502407)
详细信息
    作者简介:

    石跃祥:男,1964年生,教授,硕士生导师,研究方向为图像处理与智能系统

    周玥:女,1996年生,硕士生,研究方向为图形图像处理与行人重识别

    通讯作者:

    周玥 zhyue621@163.com

  • 中图分类号: TN911.73; TP391.41

Person Re-identification Based on Stepped Feature Space Segmentation and Local Attention Mechanism

Funds: The National Natural Science Foundation of China (61602397, 61502407)
  • 摘要: 为了让网络捕捉到更有效的内容来进行行人的判别,该文提出一种基于阶梯型特征空间分割与局部分支注意力网络(SLANet)机制的多分支网络来关注局部图像的显著信息。首先,在网络中引入阶梯型分支注意力模块,该模块以阶梯型对特征图进行水平分块,并且使用了分支注意力给每个分支分配不同的权重。其次,在网络中引入多尺度自适应注意力模块,该模块对局部特征进行处理,自适应调整感受野尺寸来适应不同尺度图像,同时融合了通道注意力和空间注意力筛选出图像重要特征。在网络的设计上,使用多粒度网络将全局特征和局部特征进行结合。最后,该方法在3个被广泛使用的行人重识别数据集Market-1501,DukeMTMC-reID和CUHK03上进行验证。其中在Market-1501数据集上的mAP和Rank-1分别达到了88.1%和95.6%。实验结果表明,该文所提出的网络模型能够提高行人重识别准确率。
  • 图  1  阶梯型局部分支注意力网络(Stepped Local Branch Attention Network,SLANet)结构

    图  2  阶梯型分块方式

    图  3  不同分块方式的对比结果

    图  4  可视化结果

    表  1  多粒度分块方法比较(%)

    分块方式mAPRank-1Rank-5Rank-10
    6_3 + 6_287.695.098.499.1
    6_3 + 8_387.194.998.398.9
    6_3 + 12_487.394.998.499.0
    8_4 + 6_287.495.198.499.0
    8_4 + 8_387.194.998.399.0
    8_4 + 12_487.795.398.599.2
    12_6 + 6_287.595.098.499.1
    12_6 + 8_387.795.298.499.1
    12_6 + 12_487.495.298.499.2
    下载: 导出CSV

    表  2  阶梯型多分支的有效性(%)

    分块方式mAPRank-1Rank-5Rank-10
    全局特征77.390.596.497.8
    8_486.894.798.499.0
    12_487.394.998.499.1
    8_4 + 12_487.795.398.599.2
    8_4 + 12_4 + 8_287.895.198.499.2
    8_4 + 12_4 + 12_387.394.998.499.1
    下载: 导出CSV

    表  3  联合训练的有效性(%)

    方法mAPRank-1Rank-5Rank-10
    baseline77.390.596.497.8
    + SBAM87.795.398.599.2
    + SBAM + MAAM88.195.698.699.2
    下载: 导出CSV

    表  4  在Market-1501数据集上的性能比较(%)

    方法mAPRank-1Rank-5Rank-10
    SVDNet[20]62.182.392.395.2
    HA-CNN[12]75.791.2
    PCB[7]77.492.397.298.2
    PCB+RPP[7]81.693.897.598.5
    HPM[21]82.794.297.598.5
    MHN[22]85.095.198.198.9
    SLANet(本文)88.195.698.699.2
    SLANet(+RK)94.696.598.198.8
    下载: 导出CSV

    表  5  在DukeMTMC-reID数据集上的性能比较(%)

    方法mAPRank-1Rank-5Rank-10
    SVDNet[20]56.876.786.489.9
    HA-CNN[12]63.880.5
    PCB[7]66.181.789.791.9
    PCB+RPP[7]69.283.390.592.5
    HPM[21]74.386.6
    MHN[22]77.289.194.696.2
    SLANet(本文)80.088.695.096.7
    SLANet(+RK)90.091.795.396.5
    下载: 导出CSV

    表  6  在CUHK03数据集上的性能比较(%)

    方法LabeledDetected
    mAPRank-1mAPRank-1
    SVDNet[20]37.840.937.341.5
    HA-CNN[12]41.044.438.641.7
    MLFN[23]49.254.747.852.8
    PCB+RPP[7]57.563.7
    MGN[8]67.468.066.066.8
    MHN[22]72.477.265.471.7
    SLANet(本文)78.480.775.278.6
    SLANet(+RK)88.687.185.583.8
    下载: 导出CSV
  • [1] 周智恒, 刘楷怡, 黄俊楚, 等. 一种基于等距度量学习策略的行人重识别改进算法[J]. 电子与信息学报, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336

    ZHOU Zhiheng, LIU Kaiyi, HUANG Junchu, et al. Improved metric learning algorithm for person re-identification based on equidistance[J]. Journal of Electronics &Information Technology, 2019, 41(2): 477–483. doi: 10.11999/JEIT180336
    [2] 陈莹, 许潇月. 基于双向参考集矩阵度量学习的行人再识别[J]. 电子与信息学报, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159

    CHEN Ying and XU Xiaoyue. Matrix metric learning for person re-identification based on bidirectional reference set[J]. Journal of Electronics &Information Technology, 2020, 42(2): 394–402. doi: 10.11999/JEIT190159
    [3] HE Botao and YU Shaohua. Ring-push metric learning for person reidentification[J]. Journal of Electronic Imaging, 2017, 26(3): 033005. doi: 10.1117/1.JEI.26.3.033005
    [4] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [5] 杨锋, 许玉, 尹梦晓, 等. 基于深度学习的行人重识别综述[J]. 计算机应用, 2020, 40(5): 1243–1252. doi: 10.11772/j.issn.1001-9081.2019091703

    YANG Feng, XU Yu, YIN Mengxiao, et al. Review on deep learning-based pedestrian re-identification[J]. Journal of Computer Applications, 2020, 40(5): 1243–1252. doi: 10.11772/j.issn.1001-9081.2019091703
    [6] ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3774–3782. doi: 10.1109/ICCV.2017.405.
    [7] SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 480–496. doi: 10.1007/978-3-030-01225-0_30.
    [8] WANG Guanshuo, YUAN Yufeng, CHEN Xiong, et al. Learning discriminative features with multiple granularities for person Re-identification[C]. Proceedings of the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 2018: 274–282. doi: 10.1145/3240508.3240552.
    [9] ZHAO Haiyu, TIAN Maoqing, SUN Shuyang, et al. Spindle Net: Person re-identification with human body region guided feature decomposition and fusion[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 907–915. doi: 10.1109/CVPR.2017.103.
    [10] MIAO Jiaxu, WU Yu, LIU Ping, et al. Pose-guided feature alignment for occluded person re-identification[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 542–551. doi: 10.1109/ICCV.2019.00063.
    [11] SONG Chunfeng, HUANG Yan, OUYANG Wanli, et al. Mask-guided contrastive attention model for person re-identification[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1179–1188. doi: 10.1109/CVPR.2018.00129.
    [12] LI Wei, ZHU Xiatian, and GONG Shaogang. Harmonious attention network for person re-identification[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2285–2294. doi: 10.1109/CVPR.2018.00243.
    [13] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 510–519. doi: 10.1109/CVPR.2019.00060.
    [14] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [15] LUO Hao, GU Youzhi, LIAO Xingyu, et al. Bag of tricks and a strong baseline for deep person re-identification[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 1487–1495. doi: 10.1109/CVPRW.2019.00190.
    [16] HERMANS A, BEYER L, and LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. https://arxiv.org/abs/1703.07737, 2017.
    [17] ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116–1124. doi: 10.1109/ICCV.2015.133.
    [18] RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]. Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 17–35. doi: 10.1007/978-3-319-48881-3_2.
    [19] LI Wei, ZHAO Rui, XIAO Tong, et al. DeepReID: Deep filter pairing neural network for person re-identification[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 152–159. doi: 10.1109/CVPR.2014.27.
    [20] SUN Yifan, ZHENG Liang, DENG Weijian, et al. SVDNet for pedestrian retrieval[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3820–3828. doi: 10.1109/ICCV.2017.410.
    [21] FU Yang, WEI Yunchao, ZHOU Yuqian, et al. Horizontal pyramid matching for person re-identification[C]. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 8295–8302. doi: 10.1609/aaai.v33i01.33018295.
    [22] CHEN Binghui, DENG Weihong, and HU Jiani. Mixed high-order attention network for person re-identification[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 371–381. doi: 10.1109/ICCV.2019.00046.
    [23] CHANG Xiaobin, HOSPEDALES T M, and XIANG Tao. Multi-level factorisation net for person re-identification[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2109–2118. doi: 10.1109/CVPR.2018.00225.
    [24] ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3652–3661. doi: 10.1109/CVPR.2017.389.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  1310
  • HTML全文浏览量:  489
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-10-21
  • 录用日期:  2021-11-05
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回