高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于曲面类型与深度学习融合的三维掌纹识别技术

张宗华 王晟贤 高楠 孟召宗

张宗华, 王晟贤, 高楠, 孟召宗. 基于曲面类型与深度学习融合的三维掌纹识别技术[J]. 电子与信息学报, 2022, 44(4): 1469-1475. doi: 10.11999/JEIT200982
引用本文: 张宗华, 王晟贤, 高楠, 孟召宗. 基于曲面类型与深度学习融合的三维掌纹识别技术[J]. 电子与信息学报, 2022, 44(4): 1469-1475. doi: 10.11999/JEIT200982
ZHANG Zonghua, WANG Shengxian, GAO Nan, MENG Zhaozong. Three-Dimensional Palmprint Recognition Technology Based on the Fusion of Surface Type and Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1469-1475. doi: 10.11999/JEIT200982
Citation: ZHANG Zonghua, WANG Shengxian, GAO Nan, MENG Zhaozong. Three-Dimensional Palmprint Recognition Technology Based on the Fusion of Surface Type and Deep Learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1469-1475. doi: 10.11999/JEIT200982

基于曲面类型与深度学习融合的三维掌纹识别技术

doi: 10.11999/JEIT200982
基金项目: 国家自然科学基金(52075147, 51675160),重大科学仪器设备开发重点专项(2017YFF0106404)
详细信息
    作者简介:

    张宗华:男,1974年生,教授,研究方向为光学检测、3维数字成像和造型、条纹自动分析、生物特征识别等

    王晟贤:男,1995年生,硕士生,研究方向为光学检测、深度学习、生物特征识别

    高楠:男,1982年生,副教授,研究方向为光学测量与光谱检测

    孟召宗:男,1983年生,副教授,研究方向为新型感知计算网络、光学3维测量、工业过程信息化与智能化

    通讯作者:

    张宗华 zhzhang@hebut.edu.cn

  • 中图分类号: TN911.73; TP391.4

Three-Dimensional Palmprint Recognition Technology Based on the Fusion of Surface Type and Deep Learning

Funds: The National Natural Science Foundation of China (52075147, 51675160), The National Key R&D Program of China (2017YFF0106404)
  • 摘要: 传统的2维掌纹识别在图像采集时容易受到干湿度、残影和压力等影响,使得其鲁棒性和准确性降低。为解决这些问题,3维掌纹识别技术应运而生。现有的3维掌纹身份认证技术需要将掌纹的特征提取与匹配识别分开进行,不仅延缓了识别时间,更增加了不同方法优化组合的难度。该文提出一种基于曲面类型(ST)与深度学习融合的3维掌纹识别方法。该方法利用ST图像表示3维掌纹特征,并将其作为卷积神经网络(CNN)的输入,实现网络的训练。测试图像可自行提取掌纹图像特征信息并在网络中直接完成识别。实验结果表明,该文方法在公开数据集上得到了99.43%的准确率和28 ms的识别时间,与传统3维掌纹识别方法相比均有提高,实现了3维掌纹的快速高精度识别。
  • 图  1  网络整体框架图

    图  2  所提方法流程图

    图  3  3维掌纹ST的深度学习结果

    表  1  由曲率得到的9类ST

    $K > 0$$K = 0$$K < 0$
    $H < 0$
    (ST=1)

    (ST=2)
    鞍岭
    (ST=3)
    $H = 0$
    (ST=4)
    平坦
    (ST=5)
    低点
    (ST=6)
    $H > 0$
    (ST=7)

    (ST=8)
    鞍谷
    (ST=9)
    下载: 导出CSV

    表  2  2维掌纹及3维掌纹不同特征表示方法的对比实验结果

    不同特征识别率(%)识别时间(ms)
    2维掌纹ROI94.7529
    GCI95.5330
    CST98.8828
    MCI99.0529
    ST99.4328
    下载: 导出CSV

    表  3  不同网络的对比实验结果

    网络识别率(%)训练时间(ms)识别时间(ms)
    LeNet+ST78.8514200031
    AlexNet+ST[11]99.4015100035
    改进LeNet5+ST99.4312800028
    下载: 导出CSV

    表  4  不同方法的对比实验

    方法识别率(%)
    MCI运算[18]90.53
    GCI运算[18]82.83
    ST差运算[18]98.58
    ST稀疏矩阵[19]99.15
    分块ST+PCA[20]99.25
    本文方法99.43
    下载: 导出CSV
  • [1] 王会勇, 唐士杰, 丁勇, 等. 生物特征识别模板保护综述[J]. 计算机研究与发展, 2020, 57(5): 1003–1021. doi: 10.7544/issn1000-1239.2020.20190371

    WANG Huiyong, TANG Shijie, DING Yong, et al. Survey on biometrics template protection[J]. Journal of Computer Research and Development, 2020, 57(5): 1003–1021. doi: 10.7544/issn1000-1239.2020.20190371
    [2] 李新春, 马红艳, 林森. 基于局部邻域四值模式的掌纹掌脉融合识别[J]. 重庆邮电大学学报:自然科学版, 2020, 32(4): 630–638. doi: 10.3979/j.issn.1673-825X.2020.04.016

    LI Xinchun, MA Hongyan, and LIN Sen. Palmprint and palm vein fusion recognition based on local neighbor quaternary pattern[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2020, 32(4): 630–638. doi: 10.3979/j.issn.1673-825X.2020.04.016
    [3] POONIA P, AJMERA P K, and SHENDE V. Palmprint recognition using robust template matching[J]. Procedia Computer Science, 2020, 167: 727–736. doi: 10.1016/j.procs.2020.03.338
    [4] 赵士伟, 张如彩, 王月明, 等. 生物特征识别技术综述[J]. 中国安防, 2015, 29(7): 79–86. doi: 10.3969/j.issn.1673-7873.2015.07.026

    ZHAO Shiwei, ZHANG Rucai, WANG Yueming, et al. Overview of biometric recognition technology[J]. China Security &Protection, 2015, 29(7): 79–86. doi: 10.3969/j.issn.1673-7873.2015.07.026
    [5] 孙冬梅, 裘正定. 生物特征识别技术综述[J]. 电子学报, 2001, 29(S1): 1744–1748. doi: 10.3321/j.issn:0372-2112.2001.z1.004

    SUN Dongmei and QIU Zhengding. A survey of the emerging biometric technology[J]. Acta Electronica Sinica, 2001, 29(S1): 1744–1748. doi: 10.3321/j.issn:0372-2112.2001.z1.004
    [6] 王曦, 盖绍彦, 达飞鹏. 融合几何信息和方向信息的三维掌纹识别方法[J]. 图学学报, 2020, 41(3): 390–398. doi: 10.11996/JG.j.2095-302X.2020030390

    WANG Xi, GAI Shaoyan, and DA Feipeng. Fusion of geometric and orientation information for 3D palmprint recognition[J]. Journal of Graphics, 2020, 41(3): 390–398. doi: 10.11996/JG.j.2095-302X.2020030390
    [7] 陆展鸿, 单鲁斌, 苏立循, 等. 基于U-Net的掌纹图像增强与ROI提取[J]. 北京航空航天大学学报, 2020, 46(9): 1807–1816. doi: 10.13700/j.bh.1001-5965.2020.0309

    LU Zhanhong, SHAN Lubin, SU Lixun, et al. Palmprint enhancement and ROI extraction based on U-Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1807–1816. doi: 10.13700/j.bh.1001-5965.2020.0309
    [8] LI Wei, ZHANG D, LU Guangming, et al. A novel 3-D palmprint acquisition system[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A:Systems and Humans, 2012, 42(2): 443–452. doi: 10.1109/TSMCA.2011.2164066
    [9] ZHANG D, LU Guangming, LI Wei, et al. Three dimensional palmprint recognition using structured light imaging[C]. 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, Washington, USA, 2008: 1–6.
    [10] BAI Xuefei, GAO Nan, ZHANG Zonghua, et al. 3D palmprint identification combining blocked ST and PCA[J]. Pattern Recognition Letters, 2017, 100: 89–95. doi: 10.1016/j.patrec.2017.10.008
    [11] 杨冰, 莫文博, 姚金良. 融合局部特征与深度学习的三维掌纹识别[J]. 浙江大学学报:工学版, 2020, 54(3): 540–545. doi: 10.3785/j.issn.1008-973X.2020.03.014

    YANG Bing, MO Wenbo, and YAO Jinliang. 3D palmprint recognition by using local features and deep learning[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(3): 540–545. doi: 10.3785/j.issn.1008-973X.2020.03.014
    [12] BESL P J and JAIN R C. Segmentation through variable-order surface fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(2): 167–192. doi: 10.1109/34.3881
    [13] 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715

    WEN Chenglin and LÜ Feiya. Review on deep learning based fault diagnosis[J]. Journal of Electronics &Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715
    [14] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015.
    [16] IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015.
    [17] PolyU 2D and 3D palmprint database[EB/OL]. http://www.comp.polyu.edu.hk/~biometrics/, 2016.
    [18] ZHANG D, LU Guangming, LI Wei, et al. Palmprint recognition using 3-D information[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) , 2009, 39(5): 505–519. doi: 10.1109/TSMCC.2009.2020790
    [19] ZHANG Lin, SHEN Ying, LI Hongyu, et al. 3D palmprint identification using block-wise features and collaborative representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8): 1730–1736. doi: 10.1109/TPAMI.2014.2372764
    [20] 白雪飞, 高楠, 张宗华, 等. 基于分块ST与主成分分析的三维掌纹识别[J]. 天津大学学报:自然科学与工程技术版, 2018, 51(6): 631–637. doi: 10.11784/tdxbz201704065

    BAI Xuefei, GAO Nan, ZHANG Zonghua, et al. Three dimensional palmprint identification based on blocked ST and PCA[J]. Journal of Tianjin University:Science and Technology, 2018, 51(6): 631–637. doi: 10.11784/tdxbz201704065
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  276
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 修回日期:  2022-01-19
  • 录用日期:  2022-02-16
  • 网络出版日期:  2022-02-22
  • 刊出日期:  2022-04-18

目录

    /

    返回文章
    返回