高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于灰度理论模型的截肢受试者手势分类方法研究

严光君 陈万忠 张涛 蒋鋆 任水芳

严光君, 陈万忠, 张涛, 蒋鋆, 任水芳. 基于灰度理论模型的截肢受试者手势分类方法研究[J]. 电子与信息学报, 2021, 43(9): 2552-2560. doi: 10.11999/JEIT200859
引用本文: 严光君, 陈万忠, 张涛, 蒋鋆, 任水芳. 基于灰度理论模型的截肢受试者手势分类方法研究[J]. 电子与信息学报, 2021, 43(9): 2552-2560. doi: 10.11999/JEIT200859
Guangjun YAN, Wanzhong CHEN, Tao ZHANG, Yun JIANG, Shuifang REN. Research on Gesture Classification Methods in Amputee Subjects Based on Gray Theory Model[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2552-2560. doi: 10.11999/JEIT200859
Citation: Guangjun YAN, Wanzhong CHEN, Tao ZHANG, Yun JIANG, Shuifang REN. Research on Gesture Classification Methods in Amputee Subjects Based on Gray Theory Model[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2552-2560. doi: 10.11999/JEIT200859

基于灰度理论模型的截肢受试者手势分类方法研究

doi: 10.11999/JEIT200859
基金项目: 吉林省科技发展计划项目(20190302034GX)
详细信息
    作者简介:

    严光君:男,1995年生,硕士生,研究方向为生物信号感知与模式识别

    陈万忠:男,1963年生,教授,研究方向为生物信号处理和人机交互

    张涛:男,1991年生,讲师,研究方向为信号处理与模式识别

    蒋鋆:女,1994年生,博士生,研究方向为生物信号处理与模式识别

    任水芳:女,1994年生,硕士生,研究方向为信号处理与模式识别

    通讯作者:

    严光君 yangj18@mails.jlu.edu.cn

  • 中图分类号: TP391.4

Research on Gesture Classification Methods in Amputee Subjects Based on Gray Theory Model

Funds: The Program of Science and Technology of Jilin Province (20190302034GX)
  • 摘要: 针对截肢者手势动作特征提取复杂、动作识别率较低的问题,该文提出一种基于灰度模型的特征提取方法。首先对预处理后的肌电信号与加速度信号经滑动窗信号截取。然后提取表面肌电信号均值、灰度模型的驱动项系数和加速度信号的绝对值均值构成特征向量,最后对滑动窗截取信号特征进行连续的识别。该文采用NinaPro(Non invasive adaptive Prosthetics)公开数据集对提出的方法进行验证,实验表明该文算法能够有效提取肌电和加速度信号的特征,对9名截肢受试者的17类手势动作的平均识别率达到91.14%,提高了17类手势的识别准确率,为仿生假肢人机交互控制算法提供了一种新的思路。
  • 图  1  手势分类算法流程框图

    图  2  电极位置摆放说明图

    图  3  17种动作手势说明

    图  4  sEMG信号预处理

    图  5  加速度信号滤波前后对比

    图  6  滑动窗单一通道截取说明图

    图  7  分类结果示意图

    图  8  分类器分类效果比较

    图  9  特征时间复杂度分析

    表  1  9位残疾人实验者在不同窗大小下的分类结果

    窗口长度受试者编号平均值
    12345891011
    10079.7186.9695.6594.273.9194.210079.7195.6588.89
    15085.5189.8692.7586.9675.3695.6510075.3692.7588.25
    25092.7588.4191.391.382.6197.110079.7197.191.14
    30076.8178.2682.6188.4172.4698.5510069.5792.7584.38
    下载: 导出CSV

    表  2  9位残疾人实验者分类结果

    受试者编号平均值
    12345891011
    动作正确率(%)92.7588.4191.3091.382.6197.110079.7197.191.14
    MER0.07250.11590.0870.0870.17390.02900.20290.0290.0886
    时间轴错误率0.26960.18610.14170.23680.45080.15850.15150.43640.13350.2405
    下载: 导出CSV

    表  3  本文与其他文献参数对比

    文献电极数分类数窗口大小特征值分类器平均准确率(%)受试者数量受试者类型
    [13]1210150/50[1*]4种时域特征LDA84.405单截肢
    [21]87250/50MAVKNN79.005截肢者
    [28]68100/NM[2*]CSSP[3*]LDA80.301截肢者
    [15]617NM功率谱密度ANN83.0012截肢者
    [29]1217250/50WPT+MAVPCASVM88.809截肢者
    [16]1217256/10TD+TFD特征RF75.169截肢者
    [17]1617300/106种特征RVFL+ELM63.1010截肢者
    本文1217250/50灰度模型+Mean+MAVSVM91.149截肢者
    小标说明: [1*]滑动窗口大小为150,增量为10,表3内窗口大小一列均为同格式。
    [2*]NM(Not Mention):没有提到;
    [3*]Common Spatio-Spectral Pattern
    下载: 导出CSV
  • [1] POLISIERO M, BIFULCO P, LICCARDO A, et al. Design and assessment of a low-Cost, electromyographically controlled, prosthetic hand[J]. Medical Devices: Evidence and Research, 2013, 2013: 97–104. doi: 10.2147/MDER.S39604
    [2] 胡中旭. 虚拟场景人机交互中手势识别技术研究[D]. [博士论文], 华中科技大学, 2018.

    HU Zhongxu. Research on gesture recognition technology in human-computer interaction of virtual scene[D]. [Ph. D. dissertation], Huazhong University of Science and Technology, 2018.
    [3] 曾海滨. 基于表面肌电控制的外骨骼手功能康复机器人研究[D]. [硕士论文], 山东大学, 2019.

    ZENG Haibin. A novel sEMG-controlled hand function exoskeleton robot for rehabilitation in post-stroke individuals[D]. [Master dissertation], Shandong University, 2019.
    [4] 邹俞, 晁建刚, 杨进. 航天员虚拟交互操作训练多体感融合驱动方法研究[J]. 图学学报, 2018, 39(4): 742–751.

    ZOU Yu, CHAO Jiangang, and YANG Jin. On multi-somatosensory driven method for virtual interactive operation training of astronaut[J]. Journal of Graphics, 2018, 39(4): 742–751.
    [5] 李晓宇. 基于手势交互的移动机器人三维环境探索及感知技术研究[D]. [硕士论文], 哈尔滨工业大学, 2017.

    LI Xiaoyu. Research on unknown environment exploration and perception based on hand gesture interaction for mobile robots[D]. [Master dissertation], Harbin Institute of Technology, 2017.
    [6] 夏朝阳, 周成龙, 介钧誉, 等. 基于多通道调频连续波毫米波雷达的微动手势识别[J]. 电子与信息学报, 2020, 42(1): 164–172. doi: 10.11999/JEIT190797

    XIA Zhaoyang, ZHOU Chenglong, JIE Junyu, et al. Micro-motion gesture recognition based on multi-channel frequency modulated continuous wave millimeter wave radar[J]. Journal of Electronics &Information Technology, 2020, 42(1): 164–172. doi: 10.11999/JEIT190797
    [7] 王勇, 吴金君, 田增山, 等. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485

    WANG Yong, WU Jinjun, TIAN Zengshan, et al. Gesture recognition with multi-dimensional parameter using FMCW radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 822–829. doi: 10.11999/JEIT180485
    [8] 马杰, 张绣丹, 杨楠, 等. 融合密集卷积与空间转换网络的手势识别方法[J]. 电子与信息学报, 2018, 40(4): 951–956. doi: 10.11999/JEIT170627

    MA Jie, ZHANG Xiudan, YANG Nan, et al. Gesture recognition method combining dense convolutional with spatial transformer networks[J]. Journal of Electronics &Information Technology, 2018, 40(4): 951–956. doi: 10.11999/JEIT170627
    [9] 石欣, 朱家庆, 秦鹏杰, 等. 基于改进能量核的下肢表面肌电信号特征提取方法[J]. 仪器仪表学报, 2020, 41(1): 121–128. doi: 10.19650/j.cnki.cjsi.j1905438

    SHI Xin, ZHU Jiaqing, QIN Pengjie, et al. Feature extraction method of lower limb surface EMG signal based on improved energy nucleus[J]. Chinese Journal of Scientific Instrument, 2020, 41(1): 121–128. doi: 10.19650/j.cnki.cjsi.j1905438
    [10] SAUDABAYEV A, and VAROL H A. Sensors for robotic hands: A survey of state of the art[J]. IEEE Access, 2015, 3: 1765–1782. doi: 10.1109/ACCESS.2015.2482543
    [11] LIU Lukai, LIU Pu, CLANCY E A, et al. Electromyogram whitening for improved classification accuracy in upper limb prosthesis control[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(5): 767–774. doi: 10.1109/TNSRE.2013.2243470
    [12] 丁其川, 熊安斌, 赵新刚, 等. 基于表面肌电的运动意图识别方法研究及应用综述[J]. 自动化学报, 2016, 42(1): 13–25. doi: 10.16383/j.aas.2016.c140563

    DING Qichuan, XIONG Anbin, ZHAO Xingang, et al. A review on researches and applications of sEMG-based motion intent recognition methods[J]. Acta Automatica Sinica, 2016, 42(1): 13–25. doi: 10.16383/j.aas.2016.c140563
    [13] LI Guanglin, SCHULTZ A E, KUIKEN T A. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(2): 185–192. doi: 10.1109/TNSRE.2009.2039619
    [14] 汪洋, 张定国. 针对上肢高位截肢者的肌电假肢设计[J]. 传感器与微系统, 2008, 37(4): 84–88, 91. doi: 10.13873/J.1000-9787(2018)04-0084-05

    WANG Yang and ZHANG Dingguo. Design of myoelectric upper-limb prosthesis towards amputees with high-level amputation[J]. Transducer and Microsystem Technologies, 2008, 37(4): 84–88, 91. doi: 10.13873/J.1000-9787(2018)04-0084-05
    [15] JIRALERSPONG T, NAKANISHI E, LIU Chao, et al. Experimental study of real-time classification of 17 voluntary movements for multi-degree myoelectric prosthetic hand[J]. Applied Sciences, 2017, 7(11): 1163. doi: 10.3390/app7111163
    [16] ROBINSON C P, LI Baihua, MENG Qinggang, et al. Effectiveness of surface electromyography in pattern classification for upper limb amputees[C]. Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition, Beijing, China, 2018: 107–112. doi: 10.1145/3268866.3268889.
    [17] CENE V H and BALBINOT A. Enhancing the classification of hand movements through sEMG signal and non-iterative methods[J]. Health and Technology, 2019, 9(4): 561–577. doi: 10.1007/s12553-019-00315-6
    [18] WANG Zhengxin and HAO Peng. An improved grey multivariable model for predicting industrial energy consumption in China[J]. Applied Mathematical Modelling, 2016, 40(11/12): 5745–5758. doi: 10.1016/j.apm.2016.01.012
    [19] 丁松, 党耀国, 徐宁. 基于虚拟变量控制的GM(1, N)模型构建及其应用[J]. 控制与决策, 2018, 33(2): 309–315. doi: 10.13195/j.kzyjc.2016.1613

    DING Song, DANG Yaoguo, and XU Ning. Construction and application of GM(1, N) based on control of dummy variables[J]. Control and Decision, 2018, 33(2): 309–315. doi: 10.13195/j.kzyjc.2016.1613
    [20] NAIK G R, ARJUNAN S, and KUMAR D. Applications of ICA and fractal dimension in sEMG signal processing for subtle movement analysis: A review[J]. Australasian Physical & Engineering Sciences in Medicine, 2011, 34(2): 179–193. doi: 10.1007/s13246-011-0066-4
    [21] CIPRIANI C, ANTFOLK C, CONTROZZI M, et al. Online myoelectric control of a dexterous hand prosthesis by transradial amputees[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(3): 260–270. doi: 10.1109/TNSRE.2011.2108667
    [22] 蒋贵虎, 陈万忠, 马迪, 等. 基于ITD和PLV的四类运动想象脑电分类方法研究[J]. 仪器仪表学报, 2019, 40(5): 195–202. doi: 10.19650/j.cnki.cjsi.j1904651

    JIANG Guihu, CHEN Wanzhong, MA Di, et al. Research on four-class motor imagery EEG classification method based on ITD and PLV[J]. Chinese Journal of Scientific Instrument, 2019, 40(5): 195–202. doi: 10.19650/j.cnki.cjsi.j1904651
    [23] ATZORI M, GIJSBERTS A, CASTELLINI C, et al. Effect of clinical parameters on the control of myoelectric robotic prosthetic hands[J]. Journal of Rehabilitation Research & Development, 2016, 53(3): 345–358. doi: 10.1682/JRRD.2014.09.0218
    [24] GIJSBERTS A, ATZORI M, CASTELLINI C, et al. Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(4): 735–744. doi: 10.1109/TNSRE.2014.2303394
    [25] 张思佳. 无线穿戴式表面肌电信号采集系统设计[D]. [硕士论文], 浙江大学, 2019.

    ZHANG Sijia. Design of wireless wearable surface EMG signal acquisition system[D]. [Master dissertation], Zhejiang University, 2019.
    [26] SMITH L H, HARGROVE L J, LOCK B A, et al. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(2): 186–192. doi: 10.1109/TNSRE.2010.2100828
    [27] TENORE F V G, RAMOS A, FAHMY A, et al. Decoding of individuated finger movements using surface electromyography[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(5): 1427–1434. doi: 10.1109/TBME.2008.2005485
    [28] HUANG Gan, ZHANG Zhiguo, ZHANG Dingguo, et al. Spatio-spectral filters for low-density surface electromyographic signal classification[J]. Medical & Biological Engineering & Computing, 2013, 51(5): 547–555. doi: 10.1007/s11517-012-1024-3
    [29] 刘俊宏. 基于特征值降维与多元信号融合的手部动作识别算法研究[D]. [硕士论文], 吉林大学, 2017.

    LIU Junhong. Recognition algorithms of hand movements based on feature dimensionality reduction and multiple signal fusion[D]. [Master dissertation], Jilin University, 2017.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  894
  • HTML全文浏览量:  679
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-04
  • 修回日期:  2021-03-08
  • 网络出版日期:  2021-04-08
  • 刊出日期:  2021-09-16

目录

    /

    返回文章
    返回