A Review of Game Theory Analysis in Cognitive Radar Anti-jamming
-
摘要: 雷达对抗的核心研究内容主要是干扰策略与抗干扰策略之间的对抗博弈,其作为电子战研究领域的热点一直备受学者们关注。该文综述了学者们利用合作与非合作博弈方法来分析雷达在进行目标探测和干扰抑制时所使用的策略,主要通过不同体制的雷达利用认知技术感知和学习外界复杂的电磁环境,合理地分配发射功率、控制编码序列、设计波形、研究检测和跟踪方法以及分配雷达通信资源等。这样雷达既节约发射所消耗的功率,又可以自适应地搜索和跟踪目标而不被敌方所发现,从而使雷达在复杂多变的现代战场环境中达到自身最优的性能。最后,对认知雷达抗干扰中的博弈论分析研究进行总结和展望,并指出了一些博弈论在认知雷达抗干扰策略应用中所面临的潜在问题和挑战。Abstract: The core research contents of radar countermeasures are the games of countermeasures between jamming strategies and anti-jamming strategies. As a hotspot in the field of electronic warfare, radar countermeasures have been paid much attention by scholars. This paper summarizes that the scholars employ the cooperative and non-cooperative game methods to analyze the radar against jamming while probing targets. Different radar systems make use of cognitive techniques perceive and learn the complex electromagnetic environment, and reasonably allocate transmitting power, control coding sequence, design waveform, investigate detection and tracking methods and allocate resources of radar communication etc. In this way, radar can not only reduce power consumption, but also search and track the target without being detected by the enemy. Thus, radar can achieve its optimal performance in the complex and changeable modern battlefield environment. Finally, game theory in cognitive radar anti-jamming is summarized and prospected, and it also points out some potential problems and challenges of game theory in cognitive radar anti-jamming.
-
Key words:
- Cognitive radar /
- Radar countermeasures /
- Game theory /
- Resource allocation /
- Nash equilibrium
-
1. 引言
由于具有全天时、全天候、远作用距离、高分辨率等独特优势,逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)广泛用于高分辨成像、目标特征提取与分类识别等领域[1,2]。通过发射稀疏步进调频信号[3],ISAR可以在获得高距离分辨率的同时减小接收机瞬时带宽,从而降低硬件要求。同时,通过设计子脉冲载频序列可以缩短观测时间并提高抗干扰能力。但是,稀疏步进调频信号对目标径向运动十分敏感,运动补偿后的残余径向运动将导致ISAR像距离和方位维的严重散焦。同时,非均匀分布的子脉冲序列使传统基于傅里叶变换的距离像合成方法失效。此外,由于子脉冲能量有限,在远距离、小目标观测时回波信噪比较低,实际成像中,一般认为0 dB回波信噪比为低信噪比[4]。因此,如何在低信噪比等复杂观测环境下,实现稀疏步进调频信号的运动补偿及聚焦成像近年来受到了雷达成像领域的广泛关注[5,6]。
稀疏步进调频信号的平动包含:(1)子脉冲间平动;(2)脉冲串间平动。针对步进调频信号,主要采用最小平均距离像熵[7]、数字拉伸[8]等运动补偿方法。针对稀疏步进调频信号,文献[9]基于补充编码对消方法实现对目标速度的精确估计。文献[10]设计了联合熵代价函数,并采用粒子群滤波(Particle Swarm Optimization, PSO)方法估计子脉冲及脉冲串间的平动。但是,上述方法存在过程复杂、精度不高等问题。
在高分辨1维距离像(High-Resolution Range Profile, HRRP)合成方面,由于稀疏步进调频信号在解线频调处理后往往对应非均匀的频率网格,因此无法采用傅里叶变换成像。针对该问题,基于稀疏信号重构[11,12]的HRRP合成方法受到了广泛关注。该类方法主要包括数值优化和稀疏贝叶斯学习方法。其中,数值优化的典型方法有正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法[10,13]、L1范数优化[14]等。但是,上述方法在低信噪比条件下重构误差较大。基于稀疏贝叶斯学习的方法首先对散射点引入稀疏先验并构建概率图模型,进而采用近似推断、采样等方法进行求解。文献[15]令散射点服从Laplace分布,进而采用梯度下降法对随机相位及HRRP进行求解。但是,Laplace分布仅有一个尺度参数,因此较难单独调整散射点向量中的某些元素以实现稀疏重构。
本文通过构造参数化字典,将稀疏步进调频信号的低信噪比ISAR成像问题转换为运动参数估计与ISAR像重构联合估计问题。同时针对现有运动参数估计方法在低信噪比时误差大,容易陷入局部最优解等不足,提出遗传算法与基于Gamma-Gauss先验的变分贝叶斯推断(Variational Bayesian Inference, VBI)相结合的稀疏步进调频信号低信噪比ISAR成像方法。该方法首先根据搜索区间内的运动参数构造字典,进而采用VBI进行低信噪比HRRP合成,最终以所得2维ISAR像的图像熵最小为准则对运动参数种群进行更新。本方法能够有效解决低信噪比下HRRP重构误差对运动参数估计的不利影响,同时能够通过种群更新跳出局部最优值,最终获得目标运动参数的精确估计与高分辨聚焦成像。仿真及实测数据的处理结果验证了所提算法的有效性。
2. 信号模型
2.1 回波模型
通过设定载频序列,可以从完整的步进调频信号中抽取得到稀疏步进调频信号。令完整的步进调频信号包含
N 个脉冲,并从中依次抽取M 个脉冲(M<N )。设稀疏步进调频信号的载频序列为fsm= fc+g(m)Δf ,Δf 对应脉冲带宽,g 为[0:N−1] 的一个子集,则稀疏步进调频信号的带宽为B=NΔf 。分析可知,其相干积累时间小于完整的步进调频信号。同时,可根据环境信息设定载频序列,从而具备一定的抗干扰能力。假设雷达共发射
K 组稀疏步进调频信号,则第k (k=1,2,⋯,K )组稀疏步进调频信号为s1(t)=M−1∑m=0rect(t−mTR−kMTRTp)⋅exp(jπγ(t−mTR−kMTR)2)⋅exp(j2πfsm(t−mTR−kMTR)) (1) 其中,
t=ˆt+mTR+kMTR (m=1,2,⋯,M )为全时间,ˆt 为快时间,rect(u) 表示矩形窗,当|u|≤1/2 时,rect(u) 为1,否则rect(u) 为0,γ 为调频率,Tp 和TR 分别表示脉冲宽度和脉冲重复周期。假设目标包含
P 个散射点,第p (p=1,2,⋯,P )个散射点的后向散射系数为σp 。基于Stop-Go模型[16],令一个脉冲内散射点p 的时延τp(t) 不变,即有τp(t)≈τp(tm,k) ,tm,k=mTR+kNTR 。则对于该散射点,第k 组稀疏步进调频信号的第m 个子脉冲回波为s2(ˆt,m,k)=σprect(ˆt−τp(tm,k)Tp)⋅exp(jπγ(ˆt−τp(tm,k))2)⋅exp(j2πfsm(ˆt−τp(tm,k)))+ε(ˆt) (2) 其中,
τp(tm,k)=2Rp(tm,k)/c ,Rp(tm,k) 为第p 个散射点到雷达的瞬时斜距,c 为光速,ε(ˆt) 为加性噪声。当成像积累角θm,k 较小时,Rp(tm,k)=R(tm,k)+ xpsinθm,k+yp ,其中R(tm,k) 为雷达到参考点的瞬时斜距,(xp,yp) 为散射点p 在成像平面上的坐标。对于高速运动目标,tm,k 时刻目标参考点到雷达的距离R(tm,k)=rR+vRtm,k+1/2aRt2m,k ,其中rR 为初始时刻目标参考点到雷达的距离,vR 为目标径向速度,aR 为目标径向加速度。参考信号时延为τref(tm,k)=2Rref(tm,k)/c ,Rref(tm,k)=rR+ˆvRtm,k+ 1/2ˆaRt2m,k 。通常,vR ,aR 的粗估计ˆvR ,ˆaR 可在目标跟踪阶段获得。对回波进行解线频调处理并令ˆf=γ(ˆt−2R(tm,k)/c) ,则信号化简为s3(ˆf,m,k)=σprect(ˆfΔf)exp(j4πc(fsm+ˆf)ΔR)exp(j4πc(ΦP+ΦB))+ε(ˆf) (3) 其中,
ΔR=xpsinθm,k+yp ,ΦP ,ΦB 分别为子脉冲间平动引起的相位误差、脉冲串间平动引起的相位误差。ΦP ,ΦB 表达式为ΦP=Φ1+Φ2,ΦB=Φ3+Φ4+Φ5Φ1=m2(12ΔaRf0TR2+ΔfΔvRTR+kΔfΔaRMTR2+12ˆfΔaRTR2),Φ2=m3(12ΔaRΔfTR2)Φ3=m(f0ΔvRTR+kΔfΔvRMTR+kΔaRf0MTR2+ˆfΔvRTR+12ΔaRΔf(kMTR)2+kΔaRˆfMTR2)Φ4=k(f0ΔvRMTR+ˆfΔvRMTR),Φ5=k2(12ΔaRf0(MTR)2+12ˆfΔaR(MTR)2)} (4) 其中,
ΔvR 为剩余速度,ΔvR=vR−ˆvR ,ΔaR 为剩余加速度,ΔaR=aR−ˆaR ,Φ1 为m 的2次相位项,距离像合成时会造成主瓣展宽;Φ2 为m 的3次相位项,合成距离像时会造成非对称旁瓣,该项数量级一般为10–4,因此可忽略;Φ3 包含m ,k 的耦合项,会造成距离像偏移,造成包络弯曲;Φ4 为k 的1次相位项,会造成图像的方位向偏移,可忽略;Φ5 是k 的2次相位项,方位向脉压时会造成方位像主瓣展宽。3.3节重点分析Φ1 ,Φ3 ,Φ5 对成像的影响。为构建基于稀疏表示的HRRP重构算法,将回波改写为离散形式。假设每个脉冲采样点数为
Nr ,并令ˉL=M⋅Nr ,则第k 组回波可表示为sk= [s0,k,⋯,s1,k,⋯,sM−1,k]T1×ˉL ,其中,sm,k=[s0,m,k,⋯ s1,m,k,⋯sNr−1,m,k]1×Nr ,snr,m,k=exp(j4πc(fsm+nrNrΔf) (ΔR+ΔvRtm,k+12ΔaRt2m,k))+ε(nr) 。将目标剩余径向运动参数
(ΔvR,ΔaR) 引入字典,则稀疏观测模型为sk=Dk(ΔvR,ΔaR)θk+n (5) 其中,
Dk(ΔvR,ΔaR)∈CˉL×L 为第k 次回波对应的字典矩阵,L=N⋅Nr ,θk∈CL×1 为第k 次回波对应的HRRP,n 为噪声向量。定义dkl 为字典矩阵Dk(ΔvR,ΔaR) 的第l 列,则dkl 表达式为dkl(Δˆv,Δˆa)=fl⊙gk⊙hk (6) 其中,
⊙ 表示内积,fl 为字典F 第l 列,F= [F0,F1,⋯,FM−1]TˉL×L ,gk=[g0,k,g1,k,⋯,gM−1,k]TˉL×1 ,hk=[h0,k,h1,k,⋯,hM−1,k]TˉL×1 。对于第
k 组信号第m 个子脉冲来说Fm=[Wm(0,0)Wm(1,0)⋯Wm(0,L−1)⋮⋮⋱⋮Wm(Nr−1,0)Wm(Nr−1,1)⋯Wm(Nr−1,L−1)]Nr×L,Wm(nr,l)=exp(j4πc(fsm+nrNrΔf)(−L2+l)ρr) (7) gm,k=[gm,k(0)gm,k(1)⋯gm,k(Nr−1)]T,gm,k(nr)=exp(j4πc(fsm+nrNrΔf)ΔvRtm,k) (8) hm,k=[hm,k(0)hm,k(1)⋯hm,k(Nr−1)]T,hm,k(nr)=exp(j2πc(fsm+nrNrΔf)ΔaRt2m,k) (9) 2.2 贝叶斯模型
由于基于稀疏贝叶斯学习的信号重构方法通常对实数矩阵进行操作,因此将式(5)改写为
y=Φθ+ε (10) 其中,
y=[Re(sk),Im(sk)]T ,θ=[Re(θk),Im(θk)]T ,Φ=[Re(Dk)−Im(Dk)Im(Dk)Re(Dk)] ,ε=[Re(n),Im(n)]T 。针对模型式(10),通过引入Gamma-Gauss先验构建概率图模型。假设噪声
ε 为0均值的高斯白噪声,此时回波y 的概率分布同样为高斯分布,ε 与y 概率分布为p(ε)=N(ε|0,α−1I)p(y|θ,α)=N(y|Φθ,α−1I)} (11) 其中,
α 为噪声精度。对稀疏向量θ 引入Gamma-Gauss先验p(θ|Λ)=N(θ|0,Λ−1) (12) 其中,精度矩阵
Λ=diag(λ1,λ2,⋯,λD) 为D 维对角阵,D=2L 。精度参数λd (d=1,2,⋯,D ),α 服从Gamma分布p(λd)=Gamma(λ|v1,v2)p(α)=Gamma(α|v3,v4)} (13) 对应的概率图模型如图1所示。根据概率图模型,联合分布可表示为所有分布的乘积,即
p(y,θ,Λ,α)=p(y|θ,α)p(θ|Λ)p(α)∏dp(λd) (14) 而随机变量的后验分布可表示为各变量的联合分布除以边缘分布
p(y) ,从而得到p(θ,Λ,α|y)=p(y,θ,Λ,α)/p(y) (15) 直接计算模型后验分布十分困难,因此利用VBI算法求解近似后验分布,从而实现低信噪比条件下的HRRP合成。
3. 基于VBI和遗传算法的运动目标ISAR成像算法
3.1 目标运动参数估计及高分辨成像方法
机动目标稀疏步进调频信号成像的核心问题是低信噪比下的有效的HRRP合成及精确的剩余运动补偿。根据式(10)模型,可通过求解如下目标函数获得目标散射点分布与剩余运动参数的准确估计
(P1):minE(I(ΔˆvR,ΔˆaR)) (16) 其中,
E(⋅) 为图像熵,I(ΔˆvR,ΔˆaR) 为补偿径向运动参数(ΔˆvR,ΔˆaR) 后的2维ISAR图像。由于式(16)代价函数包含较多的局部最优值,采用梯度下降法难以保证全局最优解,因此采用遗传算法求解P1 [17]问题。算法主要步骤如下:步骤1 初始化。令
iter1=1 ,随机初始化(ΔˆvR,ΔˆaR) 种群并设置终止次数G1 ;步骤2 对每组
(ΔˆvR,ΔˆaR) 构造相应的D(iter1)k⋅ (ΔˆvR,ΔˆaR) ,并重写信号模型为sk=D(iter1)k(ΔˆvR,ΔˆaR)θ(iter1)k+n (17) 根据所构建的概率图模型求解
θ(iter1)k ,并构建距离像矩阵{\boldsymbol{s}}_{\rm{r}}^{\left( {{\rm{iter1}}} \right)}\left( {\Delta {{\hat v}_{\rm{R}}},\Delta {{\hat a}_{\rm{R}}}} \right) = \left[ {\boldsymbol{\theta}} _1^{\left( {{\rm{iter1}}} \right)},{\boldsymbol{\theta}} _2^{\left( {{\rm{iter1}}} \right)}, \cdots , {\boldsymbol{\theta}} _K^{\left( {{\rm{iter1}}} \right)} \right] ,继而获得相应的ISAR 2维图像I(iter1) (ΔˆvR,ΔˆaR) 。计算图像熵E(I(ΔˆvR,ΔˆaR))=−Na∑na=1Nr∑nr=1(I′nr,na(ΔˆvR,ΔˆaR)⋅lg(I′nr,na(ΔˆvR,ΔˆaR))) (18) 其中,
I′nr,na(ΔˆvR,ΔˆaR)=Inr,na(ΔˆvR,ΔˆaR)/ ∑Nana∑NrnrInr,na(ΔˆvR,ΔˆaR) 为归一化图像;步骤3 保留图像熵较小的
(ΔˆvR,ΔˆaR) 个体并更新(ΔˆvR,ΔˆaR) 种群,令iter1=iter1+1 ;步骤4 循环步骤2和步骤3直至达到循环次数
G1 。根据上述流程,步骤2的关键是准确重构HRRP,重构算法将在3.2节详细讨论。步骤3将ISAR图像熵作为遗传算法适应度值,通过基因选择、基因交叉及基因变异3个步骤更新种群。基因交叉及基因变异可产生新种群,增加了种群的多样性并帮助种群跳出局部最优值。
3.2 基于VBI算法的高分辨距离像重构
由于本文采用共轭先验进行概率建模,因此可以直接采用VBI算法[18]求得后验分布的闭式解。假设
X 表示观测数据,w 表示随机变量的集合,则wj 的近似后验分布的表达式为lnq(wj)=Eqi≠j[lnp(X,w)]+const (19) 其中,
const 为保证后验分布归一化的常数。接下来,根据式(19)以及2.2节构建的概率模型,利用VBI算法分别求解变量θ ,α ,Λ 的近似后验分布以实现稀疏重构。根据平均场(mean field)假设,令式(15)为θ ,α ,Λ 后验相乘的形式p(θ,Λ,α|y)≈q(θ)q(Λ)q(α)=q(θ)∏dq(λd)q(α) (20) 下面给出
θ 求解步骤:步骤1 初始化,给定
Φ ,初始化v1 ,v2 ,v3 ,v4 ,Λ ,α ,终止阈值η1 ,终止次数G2 ;步骤2 更新变量
α ,根据式(19),其近似后验分布为Gamma分布q(α)=Gamma(α|a′,b′) (21) 其中,
a′=v3+ˉL/2 ,b′=v4+12Eq(θ) ⋅[(y−Φθ)T(y−Φθ)] ,ˉL 为y 的长度。此时,α 的期望为Eq(α)[α]=a′/b′ (22) 步骤3 更新变量
Λ ,其第d 个元素λd 的近似后验分布为Gamma分布q(λd)=Gamma(λd|e′d,f′d) (23) 其中,
e′d=v1+12 ,f′d=v2+12Eq(θ)[θ2d] 。λd 的期望为Eq(λd)[λd]=e′d/f′d (24) 步骤4 更新变量
θ ,其近似后验分布为高斯分布q(θ)=N(θ|μ′,Σ′) (25) 其中,
Σ′=(Eq(Λ)[Λ]+Eq(α)[α]ΦTΦ)−1 ,μ′= Eq(α)[α]Σ′ΦTy 。此时Eq(θ)[(y−Φθ)T(y−Φθ)]=(y−Φμ′)T(y−Φμ′)+trace(ΦTΦΣ′) (26) 步骤5 重复步骤步骤2—步骤4,当
ˆθ 相对于前一次估计的相对变化量不超过阈值η1 时,停止迭代。综上所述,基于VBI和遗传算法的稀疏步进调频信号高分辨ISAR成像算法的伪代码如表1所示。
表 1 所提算法伪代码算法:基于稀疏步进调频信号的低信噪比ISAR成像 (1) 初始化种群(ΔˆvR,ΔˆaR), v1, v2, v3, v4, Λ, α, G1, G2, η1。 (2) For iter1=1:G1 (a) For k=1:K 构造D(iter1)k(ΔˆvR,ΔˆaR); For iter2=1:G2 利用式(22)更新α; 利用式(24)更新Λ; 利用式(26)更新θ; 若ˆθ(iter1)k相对于前一次估计的变化量小于η1则停止循环; End End (b) 构建距离像矩阵s(iter1)r(ΔˆvR,ΔˆaR)=[θ(iter1)1,θ(iter1)2,⋯,θ(iter1)K],得I(iter1)(ΔˆvR,ΔˆaR); (c) 根据式(18)计算图像熵; (d) 保留图像熵较小的个体并更新种群; (e) 判断是否达到循环次数G1; End (3) 实现高分辨ISAR成像。 3.3 算法分析
下面将根据式(4)分析对
(ΔˆvR,ΔˆaR) 的精度要求。对于HRRP合成来说,2次相位项Φ1 将造成距离像展宽,因此要求脉冲串相干积累时间内Φ1 变化小于π/2 ,则|Δˆv|≤c/8M2ΔfTR |Δˆa|≤c/4f0M2TR2 在实际中,式(27b)通常可以满足,因此忽略
Δˆa 对HRRP合成的影响。为了消除1阶相位项Φ3 造成的包络弯曲,要求成像观测时间内剩余速度和剩余加速度引起的包络偏移不超过半个距离分辨单元[19],则|Δˆv|≤c/4MΔf(KMTR) |Δˆa|≤c/2MΔf(KMTR)2 值得注意的是,
Δˆv 在脉冲串间产生线性相位引起距离像偏移与弯曲,而Δˆa 导致方位主瓣展宽与散焦。为获得良好的方位聚焦效果,要求成像观测时间内剩余加速度引起的方位像峰值降低不超过3 dB,则
|Δˆa|≤7c/4f0(KMTR)2 (29) 因此,方位聚焦需要更高的加速度估计精度。最终,为获得聚焦效果良好的图像,目标剩余速度和剩余加速度应满足式(28a)及式(29)。后续实验表明,所提算法可满足该估计精度要求。
4. 仿真实验与分析
4.1 蒙特卡罗实验
为定性验证VBI算法的优越性,将其与典型数值优化、稀疏贝叶斯学习方法进行比较,利用相变图比较OMP算法[10]、梯度下降(Gradient Descent, GD)算法[15]、VBI算法的性能。相变图通过多次蒙特卡罗实验进行信号重构,采用归一化均方误差(Normalized Mean Square Error, NMSE)分析重构结果准确性[20]。相变图的相变区域分为不可重建和可重建区域,能够对算法重构性能进行直观描述。首先构建SNR和采样比组成的2维相变平面,假设稀疏向量
θ 长度为1024,如图2所示,非0元素个数为18,幅值为–1或1。然后,对每个采样比设定字典Φ ,观测向量y 由Φθ 与复高斯白噪声叠加获得,信噪比由0~15 dB,对平面的每个点,均进行25次蒙特卡罗实验,最终利用NMSE刻画信号重构准确率。图3为OMP, GD及VBI算法的相变图。其中各子图右上方区域代表可重建区域,左下方代表不可重建区域。可以看出,VBI算法相变图的可重建区域明显大于OMP和GD算法,因此该算法对信号的重构能力优于OMP和GD算法。
为进一步比较3种算法性能,以采样比为0.5观测稀疏向量
θ 获取观测向量,并添加复高斯白噪声,信噪比由0~15 dB,并对每个信噪比设置了100个不同的噪声状态[12]。用均方误差(Mean Square Error, MSE)衡量3种方法重构性能。3种方法不同信噪比下重构结果均方误差如图4所示。可以看出,3种算法重构误差均随信噪比增加而减小,与其他两种方法相比,VBI算法在各信噪比下的均方误差均为最小,表明VBI算法具有更好的重构性能与鲁棒性。此外OMP算法重构结果均方误差最大,GD算法次之。表2提供了OMP, GD及VBI算法的运算复杂度对比,其中
k0 为稀疏度,L 为信号长度。由表2可见,OMP算法运算复杂度最低,但低信噪比下重构误差最大,虽然GD算法与VBI算法运算复杂度相同,但VBI算法在运算复杂度可接受的情况下具有更优的重构效果。同时,可通过并行计算提高运算速度。表 2 运算复杂度对比重构算法 OMP GD VBI 运算复杂度 O(k0L2) O(L3) O(L3) 4.2 卫星数据仿真实验
本节通过仿真数据验证所提径向运动参数估计算法及高分辨成像算法的有效性。根据表3列出的参数生成卫星散射点模型(如图5所示)回波,假定目标剩余速度
ΔvR 和剩余加速度ΔaR 分别为9 m/s和1 m/s2。稀疏步进调频信号共包含128个脉冲串,每个脉冲串包含从80个连续全频带脉冲中随机选择的64个脉冲(波形1)。通过对回波添加复高斯白噪声,回波信噪比以5 dB为步长从0 dB增加到15 dB,针对每个信噪比进行了25次不同噪声状态的独立试验,遗传算法种群数设置为40,遗传终止次数设置为20。将所提算法并与基于参数化字典的PSO算法[10](算法1)进行对比。其中,算法1将距离像熵与平均距离像熵加权后作为目标函数。表 3 雷达系统参数fc PRF TR B Δf 10 GHz 6.4 kHz 20 μs 800 MHz 10 MHz 目标剩余速度、加速度估计误差随SNR的变化如图6所示。可以看出,低信噪比下算法1的估计误差较大,不满足式(28a)及式(29)。这是由低信噪比条件下OMP算法较大的重构误差大导致的。随着信噪比提高,算法1估计误差有所下降,但估计结果仍不满足精度要求,会导致图像散焦。与算法1相比,所提算法在各信噪比下均具有鲁棒性,剩余速度与剩余加速度估计误差为1×10–2 m/s和5×10–3 m/s2,满足式(28a)及式(29)估计精度要求。低信噪比条件下,所提算法对运动参数估计的优越性能得益于:(1)基于Gamma-Gauss先验的重构算法能够实现HRRP的高精度重构;(2)遗传算法的全局优化能力。
由于信噪比0 dB时算法1估计误差过大,无法实现聚焦成像,因此为公平比较,这里根据所提算法得到的运动参数估计值构造字典,进而分别采用OMP, GD, VBI算法求解式(10),所得图像如图7所示。由图可见,所提算法对应成像结果轮廓清晰,虚假点少,聚焦效果均优于其他算法。特别地,所提算法可以更好地描述太阳能帆板细节。此外,3种方法对应的图像熵分别为0.3310, 0.2935, 0.2915。
为了进一步验证所提算法的有效性,从80个连续全频带脉冲中随机选择48个脉冲生成新的稀疏步进调频信号(波形2)。同样,回波信噪比为0 dB。此时,所提算法的估计值
(ΔˆvR,ΔˆaR) 为(8.9719, 0.9925),算法1估计值为(8.1537, 0.4765)。由于算法1估计误差太大而无法聚焦成像,因此仅给出利用所提算法构造字典后,采用OMP, GD, VBI得到的成像结果。如图8所示,当脉冲数减少时,图像变得稀疏,但所提算法仍具有最好的成像效果,图像熵分别为0.3132, 0.2808, 0.2641。4.3 实测数据实验
本节通过Yak-42飞机实测数据验证所提算法的有效性。首先,Yak-42飞机实测数据为线性调频信号回波,通过对回波沿距离维等间隔分组,可以得到其步进调频信号回波;接着,在回波中加入由剩余运动引入的相位与复高斯白噪声;最终,通过对脉冲进行抽取获得稀疏步进调频信号。该数据的产生过程与本文算法的推导过程一致。图9为Yak-42飞机全频带实测数据成像结果,其中虚线圈代表弱散射点位置。
对于平动补偿后的Yak-42飞机实测数据,分别将目标剩余速度和加速度设置为10 m/s和1 m/s2。回波全带宽为400 MHz,由64个连续脉冲信号形成步进调频信号,距离向采样点为256,方位向采样点为512。实验中,从全频带回波抽取出两种稀疏步进调频信号并记为波形1、波形2。波形1包含50个脉冲,波形2包含40个脉冲。通过加入复高斯白噪声使回波信噪比变为0 dB。首先,分别采用所提算法和算法1对回波进行运动参数估计,估计值如表4和表5所示,可见本文算法的估计值更接近目标真实参数。
表 4 Yak-42飞机剩余速度估计值表本文算法 算法1 波形1(m/s) 9.9763 9.8973 波形2(m/s) 9.9619 9.7503 表 5 Yak-42飞机剩余加速度估计值表本文算法 算法1 波形1(m/s2) 0.9975 1.1147 波形2(m/s2) 0.9994 1.2095 表 6 不同算法对Yak-42飞机实测数据成像的图像熵OMP GD VBI 波形1 0.2757 0.2108 0.1963 波形2 0.2086 0.1957 0.1767 然后,分别采用OMP, GD, VBI算法对波形1与波形2回波进行成像,结果如图10与图11所示。由图可见,所提算法可获得聚焦良好的图像,虚假点更少,并能够更好地保留飞机的轮廓和结构信息。与OMP算法相比,所提算法成像结果虚假点更少,与GD算法相比,所提算法可以保留更多的弱散射点。表6表明,两种波形下所提算法对应的图像熵均为最小。同时,由于波形2比波形1子脉冲更少,因此波形2的图像熵小于波形1的图像熵。
5. 结束语
本文针对稀疏步进调频信号对目标径向运动敏感且低信噪比下难以聚焦成像的问题,提出一种低信噪比稀疏步进调频信号运动参数估计与高分辨成像算法。针对HRRP合成,引入Gamma-Gauss共轭先验构建概率图模型,进而采用VBI算法对其进行推断求解。由于充分利用了散射点和噪声的统计特性,该方法噪声鲁棒性,HRRP重构精度高。同时,构造参数化字典,并以图像熵最小为准则,采用遗传算法实现对运动参数和HRRP的准确估计。未来工作将重点研究基于环境感知的稀疏步进调频信号波形设计与复杂运动目标高分辨成像方法。
-
[1] HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335 [2] 黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025LI Xiang and FAN Meimei. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025 [3] HAYKIN S. Cognition is the key to the next generation of radar systems[C]. The 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island, USA, 2009: 463–467. [4] 赵国庆. 雷达对抗原理[M]. 2版. 西安: 西安电子科技大学出版社, 2012.ZHAO Guoqing. Principle of Radar Countermeasure[M]. 2nd ed. Xi’an: Xidian University Press, 2012. [5] 李光久, 李昕. 博弈论简明教程[M]. 镇江: 江苏大学出版社, 2013.LI Guangjiu and LI Xin. A Brief Tutorial on Game Theory[M]. Zhenjiang: Jiangsu University Press, 2013. [6] TOPKIS D M. Supermodularity and Complementarity[M]. Princeton: Princeton University Press, 1998: 212–214. [7] 邹鲲. 认知雷达的未知目标检测[J]. 电子与信息学报, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254ZOU Kun. Unknown target detection for cognitive radar[J]. Journal of Electronics &Information Technology, 2018, 40(1): 166–172. doi: 10.11999/JEIT170254 [8] XUE Yanbo. Cognitive radar: Theory and simulations[D]. [Ph. D. dissertation], The McMaster University, 2010. [9] HAYKIN S, XUE Yanbo, and SETOODEH P. Cognitive radar: Step toward bridging the gap between neuroscience and engineering[J]. Proceedings of the IEEE, 2012, 100(11): 3102–3130. doi: 10.1109/JPROC.2012.2203089 [10] GUERCI J R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach[M]. Boston: Artech House, 2010. [11] 左群声, 王彤. 认知雷达导论[M]. 北京: 国防工业出版社, 2017.ZUO Qunsheng and WANG Tong. Introduction to Cognitive Radar[M]. Beijing: National Defense Industry Press, 2017. [12] 张良, 祝欢, 杨予昊, 等. 机载预警雷达技术及信号处理方法综述[J]. 电子与信息学报, 2016, 38(12): 3298–3306. doi: 10.11999/JEIT161007ZHANG Liang, ZHU Huan, YANG Yuhao, et al. Overview on airborne early warning radar technology and signal processing methods[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3298–3306. doi: 10.11999/JEIT161007 [13] SHARAGA N, TABRIKIAN J, and MESSER H. Optimal cognitive beamforming for target tracking in MIMO radar/sonar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1440–1450. doi: 10.1109/JSTSP.2015.2467354 [14] BEN KILANI M, NIJSURE Y, GAGNON G, et al. Cognitive waveform and receiver selection mechanism for multistatic radar[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 417–425. doi: 10.1049/iet-rsn.2015.0319 [15] YAO Yu, MIAO Pu, and CHEN Zhimin. Cognitive waveform optimization for phase-modulation-based joint radar-communications system[J]. IEEE Access, 2020, 8: 33276–33288. doi: 10.1109/ACCESS.2020.2974787 [16] ESMAEILI-NAJAFABADI H, LEUNG H, and MOO P W. Unimodular waveform design with desired ambiguity function for cognitive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2489–2496. doi: 10.1109/TAES.2019.2942411 [17] BELL K L, BAKER C J, SMITH G E, et al. Cognitive radar framework for target detection and tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1427–1439. doi: 10.1109/JSTSP.2015.2465304 [18] GUI Ronghua, WANG Wenqin, PAN Ye, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. doi: 10.1109/JSTSP.2018.2793761 [19] WEN Cai, HUANG Yan, WU Jianxin, et al. Cognitive anti-deception-jamming for airborne array radar via phase-only pattern notching with nested ADMM[J]. IEEE Access, 2019, 7: 153660–153674. doi: 10.1109/ACCESS.2019.2948507 [20] KIRK B H, NARAYANAN R M, GALLAGHER K A, et al. Avoidance of time-varying radio frequency interference with software-defined cognitive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(3): 1090–1107. doi: 10.1109/TAES.2018.2886614 [21] KARIMI V, MOHSENI R, and SAMADI S. Adaptive OFDM waveform design for cognitive radar in signal-dependent clutter[J]. IEEE Systems Journal, 2020, 14(3): 3630–3640. doi: 10.1109/JSYST.2019.2943809 [22] LIU Xinghua, XU Zhenhai, WANG Luoshengbin, et al. Cognitive dwell time allocation for distributed radar sensor networks tracking via cone programming[J]. IEEE Sensors Journal, 2020, 20(10): 5092–5101. doi: 10.1109/JSEN.2020.2970280 [23] DU Yi, LIAO Kefei, OUYANG Shan, et al. Time and aperture resource allocation strategy for multitarget ISAR imaging in a radar network[J]. IEEE Sensors Journal, 2020, 20(6): 3196–3206. doi: 10.1109/JSEN.2019.2954711 [24] KRISHNAMURTHY V, ANGLEY D, EVANS R, et al. Identifying cognitive radars - inverse reinforcement learning using revealed preferences[J]. IEEE Transactions on Signal Processing, 2020, 68: 4529–4542. doi: 10.1109/TSP.2020.3013516 [25] GOGINENI S and NEHORAI A. Game theoretic approach for polarimetric MIMO radar waveform design[C]. 2012 International Waveform Diversity & Design Conference, Kauai, USA, 2012: 59–62. [26] Dix J P. Game-theoretic applications[J]. IEEE Spectrum, 1968, 5(4): 108–117. doi: 10.1109/MSPEC.1968.5214595. [27] ZETTERBERG L H. Signal detection under noise interference in a game situation[J]. IRE Transactions on Information Theory, 1962, 8(5): 47–52. doi: 10.1109/TIT.1962.1057773 [28] LIPFORD J. A game theoretic method of obtaining a given return from a minimum weight of radar reflectors[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(2): 193. doi: 10.1109/TAP.1963.1137988 [29] SPEYER J L. A stochastic differential game with controllable statistical parameters[J]. IEEE Transactions on Systems Science and Cybernetics, 1967, 3(1): 17–20. doi: 10.1109/TSSC.1967.300103 [30] 徐友云, 李大鹏, 钟卫, 等. 认知无线电网络资源分配: 博弈模型与性能分析[M]. 北京: 电子工业出版社, 2013.XU Youyun, LI Dapeng, ZHONG Wei, et al. Resource Management of Cognitive Radio Networks: Game Theoretic Modeling and Performance Analysis[M]. Beijing: Publishing House of Electronics Industry, 2013. [31] MITOLA J and MAGUIRE G Q. Cognitive radio: Making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13–18. doi: 10.1109/98.788210 [32] BACHMANN D J, EVANS R J, and MORAN B. Game theoretic analysis of adaptive radar jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1081–1100. doi: 10.1109/TAES.2011.5751244 [33] 冯明月, 何明浩, 郁春来, 等. 相控阵雷达噪声干扰博弈分析[J]. 现代雷达, 2014, 36(5): 10–14, 30. doi: 10.16592/j.cnki.1004-7859.2014.05.010FENG Mingyue, HE Minghao, YU Chunlai, et al. Game theory analysis of noise jamming for phased array radar[J]. Modern Radar, 2014, 36(5): 10–14, 30. doi: 10.16592/j.cnki.1004-7859.2014.05.010 [34] PANOUI A, LAMBOTHARAN S, and CHAMBERS J A. Game theoretic power allocation technique for a MIMO radar network[C]. The 2014 6th International Symposium on Communications, Control and Signal Processing, Athens, Greece, 2014: 509–512. [35] BACCI G, SANGUINETTI L, GRECO M S, et al. A game-theoretic approach for energy-efficient detection in radar sensor networks[C]. The 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop, Hoboken, USA, 2012: 157–160. [36] GODRICH H, PETROPULU A P, and POOR H V. Power allocation strategies for target localization in distributed multiple-radar architectures[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3226–3240. doi: 10.1109/TSP.2011.2144976 [37] SLIMENI F, LE NIR V, SCHEERS B, et al. Optimal power allocation over parallel Gaussian channels in cognitive radio and jammer games[J]. IET Communications, 2016, 10(8): 980–986. doi: 10.1049/iet-com.2015.0976 [38] PANOUI A, LAMBOTHARAN S, and CHAMBERS J A. Game theoretic power allocation for a multistatic radar network in the presence of estimation error[C]. 2014 Sensor Signal Processing for Defence, Edinburgh, UK, 2014: 1–5. [39] DELIGIANNIS A, PANOUI A, LAMBOTHARAN S, et al. Game-theoretic power allocation and the nash equilibrium analysis for a multistatic MIMO radar network[J]. IEEE Transactions on Signal Processing, 2017, 65(24): 6397–6408. doi: 10.1109/TSP.2017.2755591 [40] DELIGIANNIS A and LAMBOTHARAN S. A Bayesian game theoretic framework for resource allocation in multistatic radar networks[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 546–551. [41] WAN Kaifang, GAO Xiaoguang, LI Bo, et al. Optimal power management for antagonizing between radar and jamming based on continuous game theory[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31(4): 386–393. doi: 10.3969/j.issn.1005-1120.2014.04.005 [42] SUN Bin, CHEN Haowen, WEI Xizhang, et al. Power allocation for range-only localisation in distributed multiple-input multiple-output radar networks - a cooperative game approach[J]. IET Radar, Sonar & Navigation, 2014, 8(7): 708–718. doi: 10.1049/iet-rsn.2013.0260 [43] CHEN Haowen, TA Shiying, and SUN Bin. Cooperative game approach to power allocation for target tracking in distributed MIMO radar sensor networks[J]. IEEE Sensors Journal, 2015, 15(10): 5423–5432. doi: 10.1109/JSEN.2015.2431261 [44] SHI C G, SALOUS S, ZHOU J J, et al. Cooperative game-theoretic power allocation algorithm for target detection in radar network[C]. The 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017: 1–4. [45] SHI Chenguang, SALOUS S, WANG Fei, et al. Power allocation for target detection in radar networks based on low probability of intercept: A cooperative game theoretical strategy[J]. Radio Science, 2017, 52(8): 1030–1045. doi: 10.1002/2017RS006332 [46] LIU Yanqing and DONG Liang. Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory[J]. IEEE Transactions on Wireless Communications, 2014, 13(9): 4807–4820. doi: 10.1109/TWC.2014.2331287 [47] GAO Hai, WANG Jian, JIANG Chunxiao, et al. Equilibrium between a statistical MIMO radar and a jammer[C]. IEEE Radar Conference, Arlington, USA, 2015: 461–466. [48] WONDERLEY D, SELEE T, and CHAKRAVARTHY V. Game theoretic decision support framework for electronic warfare applications[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. [49] WANG Lulu, WANG Liandong, ZENG Yonghu, et al. Radar and jammer power allocation strategy based on matrix game[J]. Procedia Computer Science, 2017, 107: 478–483. doi: 10.1016/j.procs.2017.03.093 [50] DELIGIANNIS A, ROSSETTI G, PANOUI A, et al. Power allocation game between a radar network and multiple jammers[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. [51] HENAREH N and NOROUZI Y. Game theory modeling of MIMO radar and ARM missile engagement[C]. The 2016 8th International Symposium on Telecommunications, Tehran, Iran, 2016: 515–520. [52] SONG Xiufeng, WILLETT P, ZHOU Shengli, et al. The power game between a MIMO radar and jammer[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 5185–5188. [53] SONG Xiufeng, WILLETT P, ZHOU Shengli, et al. The MIMO radar and jammer games[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 687–699. doi: 10.1109/TSP.2011.216925 [54] ZHANG Xinxun, MA Hui, WANG Jianlai, et al. Game theory design for deceptive jamming suppression in polarization MIMO radar[J]. IEEE Access, 2019, 7: 114191–114202. doi: 10.1109/ACCESS.2019.2931604 [55] SONG Xiufeng, WILLETT P, and ZHOU Shengli. Jammer detection and estimation with MIMO radar[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 1312–1316. [56] LI Kang, JIU Bo, and LIU Hongwei. Game theoretic strategies design for monostatic radar and jammer based on mutual information[J]. IEEE Access, 2019, 7: 72257–72266. doi: 10.1109/ACCESS.2019.2920398 [57] NOROUZI T and NOROUZI Y. Scheduling the usage of radar and jammer during peace and war time[J]. IET Radar, Sonar & Navigation, 2012, 6(9): 929–936. doi: 10.1049/iet-rsn.2012.0049 [58] LIU Xiaowen, ZHANG Qun, LUO Ying, et al. ISAR imaging task allocation for multi-target in radar network based on potential game[J]. IEEE Sensors Journal, 2019, 19(23): 11192–11204. doi: 10.1109/JSEN.2019.2936423 [59] PIEZZO M, AUBRY A, and BUZZI S, et al. Non-cooperative code design in radar networks: A game-theoretic approach[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013: 63. doi: 10.1186/1687-6180-2013-63 [60] GOGINENI S and NEHORAI A. Game theoretic design for polarimetric MIMO radar target detection[J]. Signal Processing, 2012, 92(5): 1281–1289. doi: 10.1016/j.sigpro.2011.11.024 [61] DELIGIANNIS A, LAMBOTHARAN S, and CHAMBERS J A. Game theoretic analysis for MIMO radars with multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2760–2774. doi: 10.1109/TAES.2016.150699 [62] LAN Xing, LI Wei, WANG Xingliang, et al. MIMO radar and target stackelberg game in the presence of clutter[J]. IEEE Sensors Journal, 2015, 15(12): 6912–6920. doi: 10.1109/JSEN.2015.2466812 [63] DANIYAN A, GONG Yu, and LAMBOTHARAN S. Game theoretic data association for multi-target tracking with varying number of targets[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–4. [64] DANIYAN A, ALDOWESH A, GONG Yu, et al.. Data association using game theory for multi-target tracking in passive bistatic radar[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 42–46. [65] CHAVALI P and NEHORAI A. Concurrent particle filtering and data association using game theory for tracking multiple maneuvering targets[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 4934–4948. doi: 10.1109/TSP.2013.2272923 [66] CHAVALI P and NEHORAI A. Distributed data association for multiple-target tracking using game theory[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–6. [67] BOGDANOVIĆ N, DRIESSEN H, and YAROVOY A. Track selection in multifunction radars for multi-target tracking: An anti-coordination game[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3131–3135. [68] BOGDANOVIĆ N, DRIESSEN H, and YAROVOY A G. Target selection for tracking in multifunction radar networks: Nash and correlated equilibria[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2448–2462. doi: 10.1109/TAES.2018.2819798 [69] LEE S J, PARK S S, and CHOI H L. Potential game-based non-myopic sensor network planning for multi-target tracking[J]. IEEE Access, 2018, 6: 79245–79257. doi: 10.1109/ACCESS.2018.2885027 [70] XIE Mingchi, YI Wei, and KONG Lingjiang. Joint selection and power allocation strategy for target tracking in decentralized multiple radar systems[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. [71] XIE Mingchi, YI Wei, and KONG Lingjiang. Joint node selection and power allocation for multitarget tracking in decentralized radar networks[C]. The 2016 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 45–52. [72] XIE Mingchi, YI Wei, KIRUBARAJAN T, et al. Joint node selection and power allocation strategy for multitarget tracking in decentralized radar networks[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 729–743. doi: 10.1109/TSP.2017.2777394 [73] CHAVALI P and NEHORAI A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715–729. doi: 10.1109/TSP.2011.2174989 [74] HAN Keyong and NEHORAI A. Joint frequency-hopping waveform design for MIMO radar estimation using game theory[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–4. [75] HAN Keyong and NEHORAI A. Jointly optimal design for MIMO radar frequency-hopping waveforms using game theory[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(2): 809–820. doi: 10.1109/TAES.2015.140408 [76] PANOUI A, LAMBOTHARAN S, and CHAMBERS J A. Game theoretic distributed waveform design for multistatic radar networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1855–1865. doi: 10.1109/TAES.2016.150378 [77] SHI Chenguang, WANG Fei, SALOUS S, et al. Distributed power allocation for spectral coexisting multistatic radar and communication systems based on stackelberg game[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 4265–4269. [78] SHI Chenguang, WANG Fei, SALOUS S, et al. A robust stackelberg game-based power allocation scheme for spectral coexisting multistatic radar and communication systems[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–5. [79] SHI Chenguang, DING Lintao, WANG Fei, et al. Low probability of intercept-based collaborative power and bandwidth allocation strategy for multi-target tracking in distributed radar network system[J]. IEEE Sensors Journal, 2020, 20(12): 6367–6377. doi: 10.1109/JSEN.2020.2977328 [80] SHI Chenguang, QIU Wei, SALOUS S, et al. Power control scheme for spectral coexisting multistatic radar and massive MIMO communication systems under uncertainties: A robust Stackelberg game model[J]. Digital Signal Processing, 2019, 94: 146–155. doi: 10.1016/j.dsp.2019.05.007 [81] MISHRA K V, MARTONE A, and ZAGHLOUL A I. Power allocation games for overlaid radar and communications[C]. 2019 URSI Asia-Pacific Radio Science Conference, New Delhi, India, 2019: 1–4. 期刊类型引用(2)
1. 吴其华,赵锋,赵铁华,刘晓斌,王俊杰,肖顺平. 基于二维非周期相位调制的步进线性调频成像雷达干扰方法(英文). Frontiers of Information Technology & Electronic Engineering. 2023(03): 433-447 . 百度学术
2. 吴其华,赵锋,艾小锋,刘晓斌,顾赵宇,肖顺平. 对步进线性调频成像雷达的间歇采样转发干扰方法. 信息对抗技术. 2023(01): 12-20 . 百度学术
其他类型引用(4)
-