高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合深度情感分析和评分矩阵的推荐模型

李淑芝 余乐陶 邓小鸿

李淑芝, 余乐陶, 邓小鸿. 融合深度情感分析和评分矩阵的推荐模型[J]. 电子与信息学报, 2022, 44(1): 245-253. doi: 10.11999/JEIT200779
引用本文: 李淑芝, 余乐陶, 邓小鸿. 融合深度情感分析和评分矩阵的推荐模型[J]. 电子与信息学报, 2022, 44(1): 245-253. doi: 10.11999/JEIT200779
LI Shuzhi, YU Letao, DENG Xiaohong. Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(1): 245-253. doi: 10.11999/JEIT200779
Citation: LI Shuzhi, YU Letao, DENG Xiaohong. Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(1): 245-253. doi: 10.11999/JEIT200779

融合深度情感分析和评分矩阵的推荐模型

doi: 10.11999/JEIT200779
基金项目: 国家自然科学基金(61762046),江西省教育厅科学技术研究项目(GJJ181505)
详细信息
    作者简介:

    李淑芝:女,1964年生,教授,硕士生导师,研究方向为软件工程和信息隐藏

    余乐陶:女,1996年生,硕士生,研究方向为数据挖掘

    邓小鸿:男,1982年生,副教授,硕士生导师,研究方向为网络信息安全

    通讯作者:

    余乐陶 jxby568923279@qq.com

  • 中图分类号: TP391

Recommendation Model Combining Deep Sentiment Analysis and Scoring Matrix

Funds: The National Natural Science Foundation of China (61762046), The Science and Technology Research Project of Education Department of Jiangxi Province (GJJ181505)
  • 摘要: 目前,大多数推荐系统都具有评分数据稀疏性的问题,它会限制模型的有效性。而用户对于某件商品撰写的评论中隐含了很多信息,对评论文本进行情感分析并提取关键的因素来用于模型的学习,可以有效地缓解数据稀疏问题,但仅使用评论数据而忽略了评分数据的主要因素会影响推荐精度。对此,为了进一步提高推荐精度,该文提出一个评论文本和评分矩阵交互(RTRM)的深度模型,该模型能够提取评论文本和评分矩阵的深层次特征,并结合它们进行评分预测;其次,通过使用预训练的Electra模型得到每条评论的隐表达,并结合深度情感分析及注意力机制实现从上下文语义层面对评论文本的分析,解决了短文本的语义难以分析的问题;同时,在融合层模块中,用户(物品)评论和评分矩阵进行交互,最终预测出用户对商品的评分;最后,在6组数据集上,采用均方误差(MSE)进行性能对比实验,实验结果表明该文模型性能优于其他系统,且平均预测误差最大降低了12.821%,该模型适用于向用户推荐精确的物品。
  • 图  1  RTRM模型结构

    图  2  评论情感分析模型

    图  3  不同隐因子个数对模型性能的影响

    图  4  Dropout比率对模型性能的影响

    图  5  不同近邻个数对模型性能的影响

    图  6  余弦相似度和云模型对模型性能的影响

    表  1  数据集基本信息

    Arts and CraftsDigital MusicSoftwareKindle StoreLuxury BeautyVideo Games平均数
    用户3342319819386416756952283678944448
    物品298001287612937643815782521224532
    评论数目49448516978112805222298334278497577571984
    下载: 导出CSV

    表  2  RTRM模型与其他模型的性能比较

    数据集SVD ++HFTPMFDeep CoNNNA RRERTRM提升(%)提升(%)提升(%)
    abcdeff vs af vs cf vs e
    Arts and Crafts0.8620.8090.7940.7760.7380.69918.91011.9655.285
    Digital Music0.8350.8160.8030.7870.7630.74211.1387.5972.752
    Software0.9560.9610.9160.9020.8930.8827.7413.7121.232
    Kindle Store1.3711.3131.1051.0840.9930.97229.10312.0362.115
    Luxury Beauty0.9410.9380.9290.9120.9010.8875.7394.5211.554
    Video Games0.6750.6980.6810.6620.6550.6464.2965.1471.374
    AVG0.9400.9230.8710.8540.8240.80512.8217.4962.385
    下载: 导出CSV
  • [1] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46: 109–132. doi: 10.1016/j.knosys.2013.03.012
    [2] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619–1647. doi: 10.11897/SP.J.1016.2018.01619

    HUANG Liwei, JIANG Bitao, LÜ Shouye, et al. Survey on deep based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619–1647. doi: 10.11897/SP.J.1016.2018.01619
    [3] KOREN Y, BELL R, and VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30–37. doi: 10.1109/MC.2009.263
    [4] 张光卫, 李德毅, 李鹏, 等. 基于云模型的协同过滤推荐算法[J]. 软件学报, 2007, 18(10): 2403–2411. doi: 10.1360/jos182403

    ZHANG Guangwei, LI Deyi, LI Peng, et al. A collaborative filtering recommendation algorithm based on cloud model[J]. Journal of Software, 2007, 18(10): 2403–2411. doi: 10.1360/jos182403
    [5] SUNDERMANN C V, DOMINGUES M A, SINOARA R A, et al. Using opinion mining in context-aware recommender systems: A systematic review[J]. Information, 2019, 10(2): 42. doi: 10.3390/info10020042
    [6] CHEN Li, CHEN Guanliang, and WANG Feng. Recommender systems based on user reviews: The state of the art[J]. User Modeling And User-adapted Interaction, 2015, 25(2): 99–154. doi: 10.1007/s11257-015-9155-5
    [7] MCAULEY J and LESKOVEC J. Hidden factors and hidden topics: Understanding rating dimensions with review text[C]. The 7th ACM Conference on Recommender Systems, Hong Kong, China, 2013: 165–172. doi: 10.1145/2507157.2507163.
    [8] REN Zhaochun, LIANG Shangsong, LI Piji, et al. Social collaborative viewpoint regression with explainable recommendations[C]. The Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 2017: 485–494. doi: 10.1145/3018661.3018686.
    [9] ZHENG Lei, NOROOZI V, and YU P S. Joint deep modeling of users and items using reviews for recommendation[C]. The Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 2017: 425–434. doi: 10.1145/3018661.3018665.
    [10] LI Piji, WANG Zihao, REN Zhaochun, et al. Neural rating regression with abstractive tips generation for recommendation[C]. The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Janpan, 2017: 345–354. doi: 10.1145/3077136.3080822.
    [11] SEO S, HUANG Jing, YANG Hao, et al. Interpretable convolutional neural networks with dual local and global attention for review rating prediction[C]. The Eleventh ACM Conference on Recommender Systems, Como, Italy, 2017: 297–305. doi: 10.1145/3109859.3109890.
    [12] CHEN Chong, ZHANG Min, LIU Yiqun, et al. Neural attentional rating regression with review-level explanations[C]. The 2018 World Wide Web Conference, Lyon, France, 2018: 1583–1592. doi: 10.1145/3178876.3186070.
    [13] CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-decoder approaches[EB/OL]. https://arxiv.org/abs/1409.1259, 2014.
    [14] CLARK K, LUONG M T, LE Q V, et al. ELECTRA: Pre-training text encoders as discriminators rather than generators[C]. International Conference on Learning Representations 2020, Addis Ababa, Ethiopia, 2020: 1–13.
    [15] 赵衎衎, 张良富, 张静, 等. 因子分解机模型研究综述[J]. 软件学报, 2019, 30(3): 799–821. doi: 10.13328/j.cnki.jos.005698

    ZHAO Kankan, ZHANG Liangfu, ZHANG Jing, et al. Survey on factorization machines model[J]. Journal of Software, 2019, 30(3): 799–821. doi: 10.13328/j.cnki.jos.005698
    [16] 李琳, 朱阁, 解庆, 等. 一种潜在特征同步学习和偏好引导的推荐方法[J]. 软件学报, 2019, 30(11): 3382–3396. doi: 10.13328/j.cnki.jos.005542

    LI Lin, ZHU Ge, XIE Qing, et al. Recommendation approach by simultaneous learning latent features and preferences guidance[J]. Journal of Software, 2019, 30(11): 3382–3396. doi: 10.13328/j.cnki.jos.005542
    [17] KIM D, PARK C, OH J, et al. Convolutional matrix factorization for document context-aware recommendation[C]. The 10th ACM Conference on Recommender Systems, Boston, USA, 2016: 233–240. doi: 10.1145/2959100.2959165.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  589
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 修回日期:  2021-04-09
  • 网络出版日期:  2021-07-13
  • 刊出日期:  2022-01-10

目录

    /

    返回文章
    返回