高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于小波分解和1D-GoogLeNet的心律失常检测

杨淑莹 桂彬彬 陈胜勇

杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021, 43(10): 3018-3027. doi: 10.11999/JEIT200774
引用本文: 杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021, 43(10): 3018-3027. doi: 10.11999/JEIT200774
Shuying YANG, Binbin GUI, Shengyong CHEN. Arrhythmia Detection Based on Wavelet Decomposition and 1D-GoogLeNet[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3018-3027. doi: 10.11999/JEIT200774
Citation: Shuying YANG, Binbin GUI, Shengyong CHEN. Arrhythmia Detection Based on Wavelet Decomposition and 1D-GoogLeNet[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3018-3027. doi: 10.11999/JEIT200774

基于小波分解和1D-GoogLeNet的心律失常检测

doi: 10.11999/JEIT200774
基金项目: 国家自然科学基金(U1509207),天津市虚拟仿真实验教学建设项目基金(津教政办[2019]69)
详细信息
    作者简介:

    杨淑莹:女,1964年生,博士,教授,硕士生导师,研究方向为模式识别、图像处理

    桂彬彬:男,1995年生,硕士生,研究方向为医学信号处理

    陈胜勇:男,1973年生,博士,教授,博士生导师,研究方向为计算机视觉、图像处理

    通讯作者:

    杨淑莹 yangshuying@email.tjut.edu.cn

  • 中图分类号: R540.41; TP391

Arrhythmia Detection Based on Wavelet Decomposition and 1D-GoogLeNet

Funds: The National Natural Science Foundation of China(U1509207), Tianjin Virtual Simulation Experiment Teaching Construction Project Fund(JMEC[2019]69)
  • 摘要: 心电图(ECG)信号的准确分类对于心脏病的自动诊断非常重要。为了实现对心律失常的智能分类,该文提出一种基于小波分解和1D-GoogLeNet的精确分类方法。在该方法中,利用Db6小波对ECG信号进行8级分解,得到既含时域信息又有频域信息的多维数据。随后,分解的样本用作1D-GoogLeNet的输入训练该模型。在提出的1D-GoogLeNet模型中,借鉴Inception在图像特征提取中的优异性能,将2维卷积变换为1维卷积学习ECG的特征,并且简化各个Inception的结构,降低模型参数。该文提出的神经网络分类器能够有效缓解计算效率低、收敛困难和模型退化的问题。在实验中,选用MIT-BIH心律失常数据集测试所提模型的性能,对比了信号的不同分解分量组合作为输入的检测结果,当输入数据由{d2-d7}组合时,所提1D-GoogLeNet模型可以达到96.58%的平均准确率。此外,还对比了该模型与未经结构优化的简单1维GoogLeNet在数据集上的表现,前者在准确率上比后者提高了4.7%,训练效率提高了118%。
  • 图  1  Db6 8级ECG信号的多分辨率分解

    图  2  1D-GoogLeNet中的Inception模块

    图  3  1D-GoogLeNet中的InceptionE, Stem模块和整体网络结构图

    图  4  检测结果的混淆矩阵

    图  5  ${D_4}$数据作为输入时1D-GoogLeNet的实验结果

    图  6  D4 数据测试集的混淆矩阵

    表  1  MI-BIH中L, R, V, A和N统计结果

    标签LRVAN
    计数806972507122254474724
    下载: 导出CSV

    表  2  基于小波分解和1D-GoogLeNet的分类检测结果(%)

    输入数据多通道数据原始数据
    D1D2D3D4D5
    Acc96.3795.8396.5196.5895.00
    PM95.3795.2896.3795.7193.61
    RM94.2393.3393.7394.4292.96
    F1M94.7594.1794.8295.0193.26
    下载: 导出CSV

    表  3  各预处理方法在心律失常检测任务中的比较

    预处理DFTEMDWD
    Acc94.6394.8196.58
    PM93.7493.3195.71
    RM92.8592.8594.42
    F1M93.2793.0795.01
    下载: 导出CSV

    表  4  ${D_4}$数据作为1D-GoogLeNet的输入,各类的测试结果(%)

    心律类型NLRVAmacro-average
    P93.2699.0098.4498.1189.7395.71
    R96.9399.0699.2196.5080.4094.42
    F195.0699.0398.8397.3084.8195.01
    下载: 导出CSV

    表  5  1D-GoogLeNet与其他分类模型的实验比较

    ModelAccM(%)PM(%)RM(%)F1M(%)Time(s)Params
    1D-GoogLeNet96.5895.7194.4295.0142289111.0K
    1维化GoogLeNet92.1890.5489.2789.83922613145.4K
    LeNet94.1791.6293.2592.2925454956.8
    LSTM93.0490.0291.0290.44266870.7
    下载: 导出CSV
  • [1] 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209–220. doi: 10.3969/j.issn.1000-3614.2019.03.001

    HU Shengshou, GAO Runlin, LIU Lisheng, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019, 34(3): 209–220. doi: 10.3969/j.issn.1000-3614.2019.03.001
    [2] HUANG Jingshan, CHEN Binqing, ZENG Nianyin, et al. Accurate classification of ECG arrhythmia using MOWPT enhanced fast compression deep learning networks[J]. Journal of Ambient Intelligence and Humanized Computing, To be published. doi: 10.1007/s12652-020-02110-y
    [3] RANGAYYAN R M. Biomedical Signal Analysis: A Case Study Approach[M]. New York: IEEE Press, 2002.
    [4] VELAYUDHAN A and PETER S. Noise analysis and different denoising techniques of ECG signal - a survey[J]. IOSR Journal of Electronics and Communication Engineering, 2016, 1(1): 40–44.
    [5] SLONIM T Y M, SLONIM M A, and OVSYSCHER E A. The use of simple FIR filters for filtering of ECG signals and a new method for post-filter signal reconstruction[C]. Computers in Cardiology Conference, London, UK, 1993: 871–873. doi: 10.1109/CIC.1993.378347.
    [6] THAKOR N V and ZHU Y S. Applications of adaptive filtering to ECG analysis: Noise cancellation and arrhythmia detection[J]. IEEE Transactions on Biomedical Engineering, 1991, 38(8): 785–794. doi: 10.1109/10.83591
    [7] KABIR M A and SHAHNAZ C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains[J]. Biomedical Signal Processing and Control, 2012, 7(5): 481–489. doi: 10.1016/j.bspc.2011.11.003
    [8] WANG Ze, WAN Feng, WONG C M, et al. Adaptive Fourier decomposition based ECG denoising[J]. Computers in Biology and Medicine, 2016, 77: 195–205. doi: 10.1016/j.compbiomed.2016.08.013
    [9] WANG Ge, YANG Lin, LIU Ming, et al. ECG signal denoising based on deep factor analysis[J]. Biomedical Signal Processing and Control, 2020, 57: 101824. doi: 10.1016/j.bspc.2019.101824
    [10] YÜCELBAŞ Ş, YÜCELBAŞ C, TEZEL G, et al. Pre-determination of OSA degree using morphological features of the ECG signal[J]. Expert Systems with Applications, 2017, 81: 79–87. doi: 10.1016/j.eswa.2017.03.049
    [11] INAN O T, GIOVANGRANDI L, and KOVACS G T A. Robust neural-network-based classification of premature ventricular contractions using wavelet transform and timing interval features[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2507–2515. doi: 10.1109/TBME.2006.880879
    [12] LINH T H, OSOWSKI S, and STODOLSKI M. On-line heart beat recognition using Hermite polynomials and neuro-fuzzy network[C]. The 19th IEEE Instrumentation and Measurement Technology Conference, Anchorage, USA, 2002: 165–170. doi: 10.1109/IMTC.2002.1006834.
    [13] MARTIS R J, ACHARYA U R, and MIN L C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform[J]. Biomedical Signal Processing and Control, 2013, 8(5): 437–448. doi: 10.1016/j.bspc.2013.01.005
    [14] ALQURAN H, ALQUDAH A M, ABU-QASMIEH I, et al. ECG classification using higher order spectral estimation and deep learning techniques[J]. Neural Network World, 2019, 29: 207–219. doi: 10.14311/NNW.2019.29.014
    [15] LYON A, MINCHOLÉ A, MARTÍNEZ J P, et al. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances[J]. Journal of the Royal Society Interface, 2018, 15(138): 20170821. doi: 10.1098/rsif.2017.0821
    [16] LLAMEDO M and MARTÍNEZ J P. Heartbeat classification using feature selection driven by database generalization criteria[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(3): 616–625. doi: 10.1109/TBME.2010.2068048
    [17] NASIRI J A, NAGHIBZADEH M, YAZDI H S, et al. ECG arrhythmia classification with support vector machines and genetic algorithm[C]. The 3rd UKSim European Symposium on Computer Modeling and Simulation, Athens, Greece, 2009: 187–192. doi: 10.1109/EMS.2009.39.
    [18] CASAS M M, AVITIA R L, GONZALEZ-NAVARRO F F, et al. Bayesian classification models for premature ventricular contraction detection on ECG traces[J]. Journal of Healthcare Engineering, 2018, 2018: 2694768. doi: 10.1155/2018/2694768
    [19] KUMAR G R and KUMARASWAMY D Y S. Investigating cardiac arrhythmia in ECG using random forest classification[J]. International Journal of Computer Applications, 2012, 37(4): 31–34. doi: 10.5120/4599-6557
    [20] RAJPURKAR P, HANNUN A Y, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[EB/OL]. https://arxiv.org/abs/1707.01836,2017.
    [21] MOSTAYED A, LUO Junye, SHU Xingliang, et al. Classification of 12-lead ECG signals with Bi-directional LSTM network[EB/OL]. https://arxiv.org/abs/1811.02090,2018.
    [22] SINGH S, PANDEY S K, PAWAR U, et al. Classification of ECG arrhythmia using recurrent neural networks[J]. Procedia Computer Science, 2018, 132: 1290–1297. doi: 10.1016/j.procs.2018.05.045
    [23] MOODY G B and MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45–50. doi: 10.1109/51.932724
    [24] GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215–e220. doi: 10.1161/01.cir.101.23.e215
    [25] MAHMOODABADI S Z, AHMADIAN A, and ABOLHASANI M D. ECG feature extraction using Daubechies wavelets[C]. Visualization, Imaging, and Image Processing, Benidorm, Spain, 2005.
    [26] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    [27] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [28] IOFFE S and SZEGEDY C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
    [29] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
    [30] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]. The 31st AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
    [31] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  484
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2021-03-23
  • 网络出版日期:  2021-04-14
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回